Solveeit Logo

Question

Mathematics Question on Relations and functions

The interval in which the function f(x)=xx,x>0f(x) = x^x, \, x>0, is strictly increasing is:

A

(0,1e]\left( 0, \frac{1}{e} \right]

B

[1e2,1)\left[ \frac{1}{e^2}, 1 \right)

C

(0,)(0, \infty)

D

[1e,)\left[ \frac{1}{e}, \infty \right)

Answer

[1e,)\left[ \frac{1}{e}, \infty \right)

Explanation

Solution

Given:

f(x) = x^x, \quad x > 0\.

Taking the natural logarithm:

f(x)=xlnx.f(x) = x \ln x.

Differentiating:

1ydydx=lnx+1    dydx=xx(1+lnx).\frac{1}{y} \frac{dy}{dx} = \ln x + 1 \implies \frac{dy}{dx} = x^x(1 + \ln x).

For f(x)f(x) to be strictly increasing:

\frac{dy}{dx} > 0 \implies 1 + \ln x > 0\.

Solve:

lnx>1    x>1e.\ln x > -1 \implies x > \frac{1}{e}.

Thus, the function is strictly increasing in:

[1e,).\left[\frac{1}{e}, \infty\right).