Solveeit Logo

Question

Mathematics Question on Increasing and Decreasing Functions

The interval in which the function f(x)=x36x2+9x+10f(x) = x^3 - 6x^2 + 9x + 10 is increasing in

A

[1, 3]

B

(,1)(3,)( - \infty , 1) \cup (3, \infty)

C

(,1][3,)( - \infty , - 1] \cup [3, \infty)

D

(,1][3,)( - \infty , 1] \cup [3, \infty)

Answer

(,1][3,)( - \infty , 1] \cup [3, \infty)

Explanation

Solution

f(x)=x36x2+9x+10f\left(x\right)=x^{3}-6x^{2}+9x+10
f(x)=3x212x+9f '\left(x\right)=3x^{2}-12x+9
f(x)=0f '\left(x\right)=0
3x212x+9=03x^{2}-12x+9=0 \quad(dividing by 33)
x24x+3=0x^{2}-4x+3=0
x23xx+3=0x^{2}-3x-x+3=0
x(x3)1(x3)=0x\left(x-3\right)-1\left(x-3\right)=0
x=3,1x=3, 1
(,1][3,)(-\infty, 1 ] \cup[3,\infty)