Solveeit Logo

Question

Mathematics Question on Functions

The interval, in which the function f(x)=3x+x3f(x) = \frac{3}{x} + \frac{x}{3} is strictly decreasing, is:

A

(3,3)(-3, 3)

B

(3,0)(0,3)(-3, 0) \cup (0, 3)

C

(,3)(3,)(-\infty, -3) \cup (3, \infty)

D

R0\mathbb{R} - \\{0\\}

Answer

(3,0)(0,3)(-3, 0) \cup (0, 3)

Explanation

Solution

Start by computing the derivative of f(x)f(x):

f(x)=3x+x3.f(x) = \frac{3}{x} + \frac{x}{3}.

The derivative is:

f(x)=3x2+13.f'(x) = -\frac{3}{x^2} + \frac{1}{3}.

Simplify the derivative:

f(x)=9+x23x2.f'(x) = \frac{-9 + x^2}{3x^2}.

Set f(x)=0f'(x) = 0 to find critical points:

9+x23x2=0    9+x2=0    x2=9    x=±3.\frac{-9 + x^2}{3x^2} = 0 \implies -9 + x^2 = 0 \implies x^2 = 9 \implies x = \pm 3.

Now, analyze the sign of f(x)f'(x) in the intervals (,3)(-\infty, -3), (3,0)(-3, 0), (0,3)(0, 3), and (3,)(3, \infty):

  • For x(,3)x \in (-\infty, -3), x2>9x^2 > 9 and 9+x2>0-9 + x^2 > 0. Thus, f(x)>0f'(x) > 0 (increasing).
  • For x(3,0)x \in (-3, 0), x2<9x^2 < 9 and 9+x2<0-9 + x^2 < 0. Thus, f(x)<0f'(x) < 0 (decreasing).
  • For x(0,3)x \in (0, 3), x2<9x^2 < 9 and 9+x2<0-9 + x^2 < 0. Thus, f(x)<0f'(x) < 0 (decreasing).
  • For x(3,)x \in (3, \infty), x2>9x^2 > 9 and 9+x2>0-9 + x^2 > 0. Thus, f(x)>0f'(x) > 0 (increasing).

From this analysis, f(x)f(x) is strictly decreasing in the intervals (3,0)(0,3)(-3, 0) \cup (0, 3).