Solveeit Logo

Question

Question: The intersection of the spheres \(x ^ { 2 } + y ^ { 2 } + z ^ { 2 } + 7 x - 2 y - z = 13\)and \(x ^ ...

The intersection of the spheres x2+y2+z2+7x2yz=13x ^ { 2 } + y ^ { 2 } + z ^ { 2 } + 7 x - 2 y - z = 13and x2+y2+z23x+3y+4z=8x ^ { 2 } + y ^ { 2 } + z ^ { 2 } - 3 x + 3 y + 4 z = 8is the same as the intersection of one of the sphere and the plane

A

2xyz=12 x - y - z = 1

B

x2yz=1x - 2 y - z = 1

C

xy2z=1x - y - 2 z = 1

D

xyz=1x - y - z = 1

Answer

2xyz=12 x - y - z = 1

Explanation

Solution

We have the spheres x2+y2+z2+7x2yz13=0x ^ { 2 } + y ^ { 2 } + z ^ { 2 } + 7 x - 2 y - z - 13 = 0and x2+y2+z23x+3y+4z8=0x ^ { 2 } + y ^ { 2 } + z ^ { 2 } - 3 x + 3 y + 4 z - 8 = 0

Required plane is S1S2=0S _ { 1 } - S _ { 2 } = 0

(7x+3x)(2y+3y)(z+4z)5=0( 7 x + 3 x ) - ( 2 y + 3 y ) - ( z + 4 z ) - 5 = 0

i.e. 10x5y+(5z)5=010 x - 5 y + ( - 5 z ) - 5 = 0

2xyz=12 x - y - z = 1 .