Solveeit Logo

Question

Mathematics Question on Surface Areas and Volumes

The interior of a building is in the form of a cylinder of base radius 12 m and height 3×5 m surmounted by a cone of equal base and slant height 14 m. Find the internal curved surface area of the building.

Answer

Step 1: Find the curved surface area (CSA) of the cylinder For a cylinder: CSA=2πrh,\text{CSA} = 2\pi r h, where r=12mr = 12 \, \text{m} and h=3.5mh = 3.5 \, \text{m}: CSA (cylinder)=2π(12)(3.5)=84πm2.\text{CSA (cylinder)} = 2\pi (12)(3.5) = 84\pi \, \text{m}^2. Step 2: Find the CSA of the cone For a cone: CSA=πrl,\text{CSA} = \pi r l, where r=12mr = 12 \, \text{m} and l=14ml = 14 \, \text{m}: CSA (cone)=π(12)(14)=168πm2.\text{CSA (cone)} = \pi (12)(14) = 168\pi \, \text{m}^2. Step 3: Total CSA of the building Total CSA=CSA (cylinder)+CSA (cone)=84π+168π=252πm2.\text{Total CSA} = \text{CSA (cylinder)} + \text{CSA (cone)} = 84\pi + 168\pi = 252\pi \, \text{m}^2. Correct Answer: 252πm2252\pi \, \text{m}^2.

Explanation

Solution

Step 1: Find the curved surface area (CSA) of the cylinder For a cylinder: CSA=2πrh,\text{CSA} = 2\pi r h, where r=12mr = 12 \, \text{m} and h=3.5mh = 3.5 \, \text{m}: CSA (cylinder)=2π(12)(3.5)=84πm2.\text{CSA (cylinder)} = 2\pi (12)(3.5) = 84\pi \, \text{m}^2. Step 2: Find the CSA of the cone For a cone: CSA=πrl,\text{CSA} = \pi r l, where r=12mr = 12 \, \text{m} and l=14ml = 14 \, \text{m}: CSA (cone)=π(12)(14)=168πm2.\text{CSA (cone)} = \pi (12)(14) = 168\pi \, \text{m}^2. Step 3: Total CSA of the building Total CSA=CSA (cylinder)+CSA (cone)=84π+168π=252πm2.\text{Total CSA} = \text{CSA (cylinder)} + \text{CSA (cone)} = 84\pi + 168\pi = 252\pi \, \text{m}^2. Correct Answer: 252πm2252\pi \, \text{m}^2.