Solveeit Logo

Question

Mathematics Question on sequences

The interior angles of a polygon are in arithmetic progression. The smallest angle is 120120 and the common difference is 55 . The number of sides of the polygon is

A

7

B

9

C

11

D

16

Answer

9

Explanation

Solution

Let there be nn-sides of the polygon, then the sum of its interior angles is given by
Sn=(2n4)S_{n}=(2n-4) right angle
=(n2)×180(i)=(n-2) \times 180^{\circ} \dots(i)
Since, the interior angles form an APAP with first term a=120a = 120^{\circ} and common difference d=5d = 5^{\circ}
Sn=n2[2×120+(n1)5](ii)\therefore S_{n}=\frac{n}{2}\left[2\times120^{\circ}+\left(n-1\right)5^{\circ}\right] \ldots\left(ii\right)
From Eqs. (i)\left(i\right) and (ii)\left(ii\right),
(n2)×180=n2[2×120+(n1)×5]\left(n-2\right)\times180^{\circ}=\frac{n}{2}\left[2\times120^{\circ}+\left(n-1\right)\times5^{\circ}\right]
(n2)×360=n(5n+235)\Rightarrow \left(n-2\right)\times360=n\left(5n+235\right)
n225n+144=0\Rightarrow n^{2}-25n+144=0
(n16)(n9)=0\Rightarrow \left(n-16\right)\left(n-9\right)=0
n=16\Rightarrow n=16 or n=9n=9
But, when n=16n = 16 the last angle
an=a+(n1)da_{n}=a+\left(n-1\right)d
=120+(161)×5=120^{\circ}+\left(16-1\right)\times5
=195=195^{\circ}
which is not possible
Hence, n=9n=9