Solveeit Logo

Question

Question: The interior angles of a polygon are in A.P. If the smallest angle be \(120 ^ { \circ }\) and the c...

The interior angles of a polygon are in A.P. If the smallest angle be 120120 ^ { \circ } and the common difference be 5o, then the number of sides is.

A

8

B

10

C

9

D

6

Answer

9

Explanation

Solution

Let the number of sides of the polygon be nn .

Then the sum of interior angles of the polygon

=(2n4)π2=(n2)π= ( 2 n - 4 ) \frac { \pi } { 2 } = ( n - 2 ) \pi

Since the angles are in A.P. and a=120,d=5a = 120 ^ { \circ } , d = 5,

therefore n2[2×120+(n1)5]=(n2)180\frac { n } { 2 } [ 2 \times 120 + ( n - 1 ) 5 ] = ( n - 2 ) 180

n225n+144=0n ^ { 2 } - 25 n + 144 = 0(n9)(n16)=0( n - 9 ) ( n - 16 ) = 0n=9,16n = 9,16

But n=16n = 16 gives T16=a+15d=120+15.5=195T _ { 16 } = a + 15 d = 120 ^ { \circ } + 15.5 ^ { \circ } = 195 ^ { \circ }, which is impossible as interior angle cannot be greater than 180180 ^ { \circ } . Hence n=9n = 9 .