Solveeit Logo

Question

Question: The integration of \(\int {x.\dfrac{{\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {1 + {x^2}...

The integration of x.ln(x+1+x2)1+x2dx\int {x.\dfrac{{\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {1 + {x^2}} }}} dx is equal to:
(A)\left( A \right) 1+x2ln(x+1+x2)x+c\sqrt {1 + {x^2}} \ln \left( {x + \sqrt {1 + {x^2}} } \right) - x + c (B)\left( B \right) x2.ln2(x+1+x2)x1+x2+c\dfrac{x}{2}.{\ln ^2}\left( {x + \sqrt {1 + {x^2}} } \right) - \dfrac{x}{{\sqrt {1 + {x^2}} }} + c
(C)\left( C \right) x2.ln2(x+1+x2)+x1+x2+c\dfrac{x}{2}.{\ln ^2}\left( {x + \sqrt {1 + {x^2}} } \right) + \dfrac{x}{{\sqrt {1 + {x^2}} }} + c (D)\left( D \right) 1+x2ln(x+1+x2)+x+c\sqrt {1 + {x^2}} \ln \left( {x + \sqrt {1 + {x^2}} } \right) + x + c

Explanation

Solution

Hint : In these types of functions we will try our best to make the integral in simplest form and this can be done by method i.e. rationalization and substitution. Generally we will do substitution so that one function would become derivative of another, so both can be substituted at the same time.

Complete step by step solution :
Given, x.ln(x+1+x2)1+x2dx\int {x.\dfrac{{\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {1 + {x^2}} }}} dx
Now, we will substitute xxwith tanθ\tan \theta
So, let x=tanθx = \tan \theta
So we get,
dx=sec2θdθdx = {\sec ^2}\theta d\theta
And substitute this to the equation we get
=tanθ.ln(tanθ+1+tan2θ)1+tan2θ×sec2θdθ= \int {\tan \theta .\dfrac{{\ln \left( {\tan \theta + \sqrt {1 + {{\tan }^2}\theta } } \right)}}{{\sqrt {1 + {{\tan }^2}\theta } }}} \times {\sec ^2}\theta d\theta
We can know that, 1+tan2θ=sec2θ1 + {\tan ^2}\theta = {\sec ^2}\theta
1+tan2θ=sec2θ 1+tan2θ=secθ  \sqrt {1 + {{\tan }^2}\theta } = \sqrt {{{\sec }^2}\theta } \\\ \sqrt {1 + {{\tan }^2}\theta } = \sec \theta \\\
So when we put it to the equation we get,
==tanθ.ln(tanθ+secθ)secθ×sec2θdθ= = \int {\tan \theta .\dfrac{{\ln \left( {\tan \theta + \sec \theta } \right)}}{{\sec \theta }}} \times {\sec ^2}\theta d\theta
=tanθ.ln(tanθ+secθ).secθdθ= \int {\tan \theta .\ln \left( {\tan \theta + \sec \theta } \right)} .\sec \theta d\theta
=secθ×tanθ×ln(tanθ+secθ)dθ= \int {\sec \theta \times \tan \theta \times \ln \left( {\tan \theta + \sec \theta } \right)} d\theta
Now, we will apply Integration by parts
Our first function =ln(tanθ+secθ) = \ln \left( {\tan \theta + \sec \theta } \right)
Second function =secθ.tanθ= \sec \theta .\tan \theta
We know secθ.tanθdθ=secθ\int {\sec \theta .\tan \theta } d\theta = \sec \theta
Now we put it to the equation, ln(tanθ+secθ)×secθ.tanθdθd(ln(tanθ+secθ))dθsecθ.tanθdθ\ln \left( {\tan \theta + \sec \theta } \right) \times \int {\sec \theta .\tan \theta d} \theta - \int {\dfrac{{d\left( {\ln \left( {\tan \theta + \sec \theta } \right)} \right)}}{{d\theta }}\int {\sec \theta .\tan \theta d\theta } }
== ln(tanθ+secθ)×secθ1tanθ+secθ×(sec2θ+secθtanθ)×secθdθ\ln \left( {\tan \theta + \sec \theta } \right) \times \sec \theta - \int {\dfrac{1}{{\tan \theta + \sec \theta }} \times \left( {{{\sec }^2}\theta + \sec \theta \tan \theta } \right)} \times \sec \theta d\theta
=ln(tanθ+secθ)×secθ1(tanθ+secθ)×secθ(secθ+tanθ)×secθdθ= \ln \left( {\tan \theta + \sec \theta } \right) \times \sec \theta - \int {\dfrac{1}{{\left( {\tan \theta + \sec \theta } \right)}} \times \sec \theta \left( {\sec \theta + \tan \theta } \right)} \times \sec \theta d\theta
=ln(tanθ+secθ)×secθsec2θdθ= \ln \left( {\tan \theta + \sec \theta } \right) \times \sec \theta - \int {{{\sec }^2}} \theta d\theta
=ln(tanθ+secθ)×secθtanθ+c= \ln \left( {\tan \theta + \sec \theta } \right) \times \sec \theta - \tan \theta + c
We get our answer only when we replace θ\theta in terms of xx
Now replace θ\theta in term of xx
1+x2ln(x+1+x2)x+c\sqrt {1 + {x^2}} \ln \left( {x + \sqrt {1 + {x^2}} } \right) - x + c
This is the correct answer.
So, the correct option is AA.

Note : Generally one can make mistakes during the substitution of dx,dydx,dyetc. So be careful during substitution. Always converts the final answer after substitution into the same variable as it was given in the question.