Question
Mathematics Question on Differential equations
The integrating factor of the first order differential equation x2(x2−1)dxdy+x(x2+1)y=x2−1 is
A
ex
B
x−x1
C
x+x1
D
x21
Answer
x−x1
Explanation
Solution
We have,
x2(x2−1)dxdy+x(x2+1)y=x2−1
dxdy+x(x2−1)x2+1y=x21
⇒IF=ex(x2−1)x2+1
∴=e1x(x−1)(x+1)x2+1dx
Let x(x−1)(x+1)x2+1=xA+x−1B+x+1C ⇒x2+1=A(x−1)(x+1)+Bx(x+1) +Cx(x−1)
Put x=0,
∴1=−A
⇒A=−1
Put x=1,
∴2=2B
⇒B=1
Put x=−1,
∴2=2C
⇒C=1
∴x(x−1)(x+1)x2+1=x−1+x−11+x+11
∴IF=e∫(x−1+x−11+x+11)dx
=e[−logx+log(x−1)+log(x+1)]
=elog(xx2−1)=xx2−1
=x−x1