Solveeit Logo

Question

Mathematics Question on Differential equations

The integrating factor of the first order differential equation x2(x21)dydx+x(x2+1)y=x21x^{2}\left(x^{2}-1\right) \frac{dy}{dx}+x\left(x^{2}+1\right)y=x^{2}-1 is

A

exe^x

B

x1xx-\frac{1}{x}

C

x+1xx+\frac{1}{x}

D

1x2\frac{1}{x^{2}}

Answer

x1xx-\frac{1}{x}

Explanation

Solution

We have,
x2(x21)dydx+x(x2+1)y=x21x^{2}\left(x^{2}-1\right) \frac{d y}{d x}+x\left(x^{2}+1\right) y=x^{2}-1
dydx+x2+1x(x21)y=1x2\frac{d y}{d x}+\frac{x^{2}+1}{x\left(x^{2}-1\right)} y=\frac{1}{x^{2}}
IF=ex2+1x(x21)\Rightarrow I F=e^{\frac{x^{2}+1}{x\left(x^{2}-1\right)}}
=e1x2+1x(x1)(x+1)dx\therefore =e^{1} \frac{x^{2}+1}{x(x-1)(x+1)} d x
Let x2+1x(x1)(x+1)=Ax+Bx1+Cx+1\frac{x^{2}+1}{x(x-1)(x+1)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1} x2+1=A(x1)(x+1)+Bx(x+1)\Rightarrow x^{2}+1=A(x-1)(x+1)+B x(x+1) +Cx(x1)+C x(x-1)
Put x=0,x=0,
1=A\therefore 1=-A
A=1\Rightarrow A=-1
Put x=1,x=1,
2=2B\therefore 2=2 B
B=1\Rightarrow B=1
Put x=1,x=-1,
2=2C\therefore 2=2 C
C=1\Rightarrow C=1
x2+1x(x1)(x+1)=1x+1x1+1x+1\therefore \frac{x^{2}+1}{x(x-1)(x+1)}=\frac{-1}{x}+\frac{1}{x-1}+\frac{1}{x+1}
IF=e(1x+1x1+1x+1)dx\therefore I F=e^{\int\left(\frac{-1}{x}+\frac{1}{x-1}+\frac{1}{x+1}\right) d x}
=e[logx+log(x1)+log(x+1)]=e^{[-\log x+\log (x-1)+\log (x+1)]}
=elog(x21x)=x21x=e^{\text{log}\left(\frac{x^{2}-1}{x}\right)}=\frac{x^{2}-1}{x}
=x1x=x-\frac{1}{x}