Question
Mathematics Question on Differential equations
The integrating factor of the differential equation.
(1-y^{2})\frac{dx}{dy}+yx=ay$$(-1<y<1)$$is
A
y2−11
B
y2−11
C
1−y21
D
1−y21
Answer
1−y21
Explanation
Solution
The given differential equation is:
(1−y2)dydx+yx=ay
⇒dxdy+1−y2yx=1−y2ay
This is a linear differential equation of the form:
\frac{dx}{dy}+py=Q$$(where p=\frac{y}{1-y^{2}} and Q=\frac{ay}{1-y^{2)}}
The integrating factor(I.F.)is given by the relation,
e∫pdx
∴I.F.=e^{\int{pdy}}=e^{\int{\frac{y}{1-y^{2}}}dy}=$$e^{-\frac{1}{2}log(1-y{^2})}=$$e^{log[\frac{1}{\sqrt{1-y^{2}}}]}=$$\frac{1}{\sqrt{1-y^{2}}}
Hence,the correct answer is D.