Solveeit Logo

Question

Mathematics Question on Differential equations

The integrating factor of the differential equation xdydxy=2x2x\frac{dy}{dx}-y=2x^{2} is

A

exe-x

B

eye-y

C

1x\frac{1}{x}

D

xx

Answer

1x\frac{1}{x}

Explanation

Solution

The given differential equation is:

xdydxy=2x2x\frac{dy}{dx}-y=2x^{2}

dydxyx=2x⇒\frac{dy}{dx}-\frac{y}{x}=2x

This is a linear differential equation of the form:

\frac{dy}{dx}+py=Q$$=Q(where p=$$\frac{-1}{x} andand Q=2xQ=2x).

The integrating factor(I.F.)is given by the relation,

epdxe^{∫pdx}

I.F.=∴I.F.= e1xdxe^{∫\frac{-1}{x}dx}=elogxe^{-logx}=elog(x1)e^{log(x^{-1})}=x1x^{-1}=1x\frac{1}{x}

Hence,the correct answer is C.