Solveeit Logo

Question

Mathematics Question on Differential equations

The integrating factor of the differential equation dydx+(3x2tan1yx3)(1+y2)=0\frac{d y}{d x}+\left(3 x^{2} \tan ^{-1} y-x^{3}\right)\left(1+y^{2}\right)=0is

A

ex2e^{x^2}

B

ex3e^{x^3}

C

e3x2e^{3x^2}

D

e3x3e^{3x^3}

Answer

ex3e^{x^3}

Explanation

Solution

Given, dydx=(3x2tan1yx3)(1+y2)\frac{d y}{d x}=-\left(3 x^{2} \tan ^{-1} y-x^{3}\right)\left(1+y^{2}\right)
dydx=x3(1+y2)3x2(tan1y)(1+y2)\Rightarrow \frac{d y}{d x}=x^{3}\left(1+y^{2}\right)-3 x^{2}\left(\tan ^{-1} y\right)\left(1+y^{2}\right)
1(1+y2)dydx=x33x2tan1y\Rightarrow \frac{1}{\left(1+y^{2}\right)} \cdot \frac{d y}{d x}=x^{3}-3 x^{2} \tan ^{-1} y
11+y2dydx+3x2tan1y=x3\Rightarrow \frac{1}{1+y^{2}} \cdot \frac{d y}{d x}+3 x^{2} \tan ^{-1} y=x^{3}
Put tan1y=t\tan ^{-1} y=t
11+y2dydx=dtdx\Rightarrow \frac{1}{1+y^{2}} \cdot \frac{d y}{d x}=\frac{d t}{d x}
dtdx+3tx2=x3\therefore \frac{d t}{d x}+3 t x^{2}=x^{3}
which is linear differential equation in tt.
Now, I F=θ3x2dx=ex3F=\theta^{\int 3 x^{2} d x}=e^{x^{3}}