Question
Mathematics Question on Differential equations
The integrating factor of the differential equation dxdy+(3x2tan−1y−x3)(1+y2)=0is
A
ex2
B
ex3
C
e3x2
D
e3x3
Answer
ex3
Explanation
Solution
Given, dxdy=−(3x2tan−1y−x3)(1+y2)
⇒dxdy=x3(1+y2)−3x2(tan−1y)(1+y2)
⇒(1+y2)1⋅dxdy=x3−3x2tan−1y
⇒1+y21⋅dxdy+3x2tan−1y=x3
Put tan−1y=t
⇒1+y21⋅dxdy=dxdt
∴dxdt+3tx2=x3
which is linear differential equation in t.
Now, I F=θ∫3x2dx=ex3