Solveeit Logo

Question

Mathematics Question on Differential equations

The integrating factor of the differential equation (1+x2)dydx+xy=cosx\left(1+x^{2}\right)\frac{dy}{dx}+xy=cos\,x is equal to

A

1+x\sqrt{1+x}

B

1+2x2\sqrt{1+2x^{2}}

C

1+x2\sqrt{1+x^{2}}

D

2+x2\sqrt{2+x^{2}}

Answer

1+x2\sqrt{1+x^{2}}

Explanation

Solution

We have, (1+x2)dydx+xy=cosx(1 + x^2) \frac{dy}{dx} + xy = cos\,x
dydx+(x1+x2)y=cosx1+x2\Rightarrow \frac{dy}{dx} + (\frac{x}{1+x^2}) y =\frac{cos\,x}{1+x^2}
I.F.=e(122x1+x2dx)=e12log(1+x2)\therefore I.F. = e^{\left(\frac{1}{2}\int\frac{2x}{1+x^{2}}dx\right)} = e^{\frac{1}{2}log\left(1+x^{2}\right)}
=1+x2= \sqrt{1+x^{2}}