Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The integrating factor of the differential equation x.dyx+2y=x2x . \frac{dy}{x} + 2y = x^2 is (x0)(x \neq 0)

A

x2x^2

B

logx\log |x|

C

elogxe^{\log \,x}

D

xx

Answer

x2x^2

Explanation

Solution

We have.
xdydx+2y=x2x \frac{d y}{d x}+2 y=x^{2}
dydx+2xy=x\Rightarrow\, \frac{d y}{d x}+\frac{2}{x} y=x
The above differential equation is a linear differential equation.
\therefore Integrating factor =e2xdx=e^{\int \frac{2}{x} d x}
=e2logx=e^{2 \log x}
=elogx2=e^{\log\, x^{2}}
=x2=x^{2}