Solveeit Logo

Question

Question: The integrating factor of the differential equation is \[{x^2}({x^2} - 1)\dfrac{{dy}}{{dx}} + {x^2}(...

The integrating factor of the differential equation is x2(x21)dydx+x2(x2+1)y=x21{x^2}({x^2} - 1)\dfrac{{dy}}{{dx}} + {x^2}({x^2} + 1)y = {x^2} - 1
A.x21x\dfrac{{{x^2} - 1}}{x}
B.x2+1x2(x21)\dfrac{{{x^2} + 1}}{{{x^2}({x^2} - 1)}}
C.logx21x\log \dfrac{{{x^2} - 1}}{x}
D.None of this.

Explanation

Solution

Make given equation in form of linear differential equation as
dxdy+p(x)y=q(x)\dfrac{{dx}}{{dy}} + p(x)y = q(x).solution of this equation is y×u(x)=((u(x)×q(x)dx)+Cy \times u\left( x \right) = (\smallint \left( {u\left( x \right) \times q\left( x \right)dx} \right) + C
Where u(x)=e(p(x)dx)u(x) = {e^{\int {(p(x)dx)} }}

Complete step-by-step answer:
Given, Differential equation as x2(x21)dydx+x2(x2+1)y=x21{x^2}({x^2} - 1)\dfrac{{dy}}{{dx}} + {x^2}({x^2} + 1)y = {x^2} - 1
dydx+(x2+1)yx(x21)=1x2\dfrac{{dy}}{{dx}} + \dfrac{{({x^2} + 1)y}}{{x({x^2} - 1)}} = \dfrac{1}{{{x^2}}}
This is in the form of linear differential equation as
dxdy+p(x)y=q(x)\dfrac{{dx}}{{dy}} + p(x)y = q(x) .Then the solution of the equation is y×u(x)=((u(x)×q(x)dx)+Cy \times u\left( x \right) = (\smallint \left( {u\left( x \right) \times q\left( x \right)dx} \right) + C
Where u(x)=e(p(x)dx)u(x) = {e^{\int {(p(x)dx)} }} which is the integration factor of the equation.
⇒ On comparing the given equation with the general equation. p(x)=(x2+1)x(x21),q(x)=1x2p(x) = \dfrac{{({x^2} + 1)}}{{x({x^2} - 1)}},q(x) = \dfrac{1}{{{x^2}}}
Integrating factor,

& u(x) = {e^{\int {(\dfrac{{({x^2} + 1)}}{{x({x^2} - 1)}}dx)} }} \cr & = {e^{\int {(\dfrac{1}{{(x - 1)}} + \dfrac{1}{{(1 + x)}} - \dfrac{1}{x})dx} }} \cr & = {e^{(\ln (x - 1) + \ln (x + 1) - \ln x)}} \cr & = {e^{\ln (\dfrac{{({x^2} - 1)}}{x})}} \cr} $$ **So the correct option is a. $$\dfrac{{{x^2} - 1}}{x}$$** **Note:** It is necessary to form a given equation into $$\dfrac{{dx}}{{dy}} + p(x)y = q(x)$$. Solution of this equation is $$y \times u\left( x \right) = (\smallint \left( {u\left( x \right) \times q\left( x \right)dx} \right) + C$$ Where $$u(x) = {e^{\int {(p(x)dx)} }}$$