Solveeit Logo

Question

Question: The integrating factor of the differential equation \[3x{{\log }_{e}}x\dfrac{dy}{dx}+y=2{{\log }_{e}...

The integrating factor of the differential equation 3xlogexdydx+y=2logex3x{{\log }_{e}}x\dfrac{dy}{dx}+y=2{{\log }_{e}}x is given by:
(a) (logex)2{{\left( {{\log }_{e}}x \right)}^{2}}
(b) loge(logex){{\log }_{e}}\left( {{\log }_{e}}x \right)
(c) logex{{\log }_{e}}x
(d) (logex)13{{\left( {{\log }_{e}}x \right)}^{\dfrac{1}{3}}}

Explanation

Solution

Hint: Here, we can see that the given equation is a differential equation of the form dydx+P(x)y=Q(x)\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right). Hence our integrating factor would be eP(x)dx{{e}^{\int{P\left( x \right)dx}}}. By substituting the value of P(x) from the given equation, find the integrating factor.

Complete step-by-step answer:

Here, we have to find the integrating factor of the differential equation 3xlogexdydx+y=2logex3x{{\log }_{e}}x\dfrac{dy}{dx}+y=2{{\log }_{e}}x.
Let us consider the differential equation given in the question: 3xlogexdydx+y=2logex3x{{\log }_{e}}x\dfrac{dy}{dx}+y=2{{\log }_{e}}x. Let us divide the whole equation by 3xlogex3x{{\log }_{e}}x, we get,
dydx+13xlogexy=23x....(i)\dfrac{dy}{dx}+\dfrac{1}{3x{{\log }_{e}}x}y=\dfrac{2}{3x}....\left( i \right)
We know that for the general first-order differential equation, dydx+P(x)y=Q(x)\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right). We have an integration factor =eP(x)dx={{e}^{\int{P\left( x \right)dx}}}. So by comparing equation (i) by general first-order differential equation, we get, P(x)=13xlogexP\left( x \right)=\dfrac{1}{3x{{\log }_{e}}x}. Hence, we get, Integration factor =e13xlogexdx={{e}^{\int{\dfrac{1}{3x{{\log }_{e}}x}}dx}}.
Let us assume 13xlogexdx=I\int{\dfrac{1}{3x{{\log }_{e}}x}dx=I}. Therefore, we get, Integration factor =eI....(ii)={{e}^{I}}....\left( ii \right).
Now, let us consider, I =13xlogexdx....(iii)=\int{\dfrac{1}{3x{{\log }_{e}}x}dx....\left( iii \right)}
Let us take logex=t{{\log }_{e}}x=t and we know that ddx(logex)=1x\dfrac{d}{dx}\left( {{\log }_{e}}x \right)=\dfrac{1}{x}. Therefore, by differentiating both sides, we get,
1xdx=dt\dfrac{1}{x}dx=dt
By substituting logex=t{{\log }_{e}}x=t and 1xdx=dt\dfrac{1}{x}dx=dt in equation (iii), we get,
I=131tdtI=\dfrac{1}{3}\int{\dfrac{1}{t}dt}
We know that 1xdx=logex\int{\dfrac{1}{x}dx={{\log }_{e}}x}. By using this, we get,
I=13(loget)I=\dfrac{1}{3}\left( {{\log }_{e}}t \right)
We know that t=logext={{\log }_{e}}x. Therefore, we get,
I=13[loge(logex)]I=\dfrac{1}{3}\left[ {{\log }_{e}}\left( {{\log }_{e}}x \right) \right]
By substituting the value of I in equation (ii), we get,
Integrating factor =e13[loge(logex)]={{e}^{\dfrac{1}{3}\left[ {{\log }_{e}}\left( {{\log }_{e}}x \right) \right]}}
We know that alogb=logbaa\log b=\log {{b}^{a}}, so we can rewrite e13[loge(logex)]{{e}^{\dfrac{1}{3}\left[ {{\log }_{e}}\left( {{\log }_{e}}x \right) \right]}} as e[loge(logex)13]{{e}^{\left[ {{\log }_{e}}{{\left( {{\log }_{e}}x \right)}^{\dfrac{1}{3}}} \right]}} . We also know that elogx=x{{e}^{\log x}}=x, so we can again rewrite e[loge(logex)13]{{e}^{\left[ {{\log }_{e}}{{\left( {{\log }_{e}}x \right)}^{\dfrac{1}{3}}} \right]}} as (logex)13{{\left( {{\log }_{e}}x \right)}^{\dfrac{1}{3}}} . Therefore, we get I.F=(logex)13I.F={{\left( {{\log }_{e}}x \right)}^{\dfrac{1}{3}}}.
Therefore our integrating factor is (logex)13{{\left( {{\log }_{e}}x \right)}^{\dfrac{1}{3}}}
Hence, option (d) is the right answer.

Note: Here, students often make the mistake of writing P(x)dx\int{P\left( x \right)dx} as an integrating factor after finding it. But they must not forget that the integrating factor is eP(x)dx{{e}^{\int{P\left( x \right)dx}}}. So after getting P(x)dx\int{P\left( x \right)dx}, always remember to substitute it in the power of e to get the desired result. Also, whenever 1xdx\dfrac{1}{x}dx and logex{{\log }_{e}}x come together, students should always remember the substitution of logex=t{{\log }_{e}}x=t and 1xdx=dt\dfrac{1}{x}dx=dt.