Question
Mathematics Question on Differential Equations
The integrating factor of the differential equation (ylogey)dydx+x=2logey is:
A
logey
B
y1
C
y
D
loge(logey)
Answer
logey
Explanation
Solution
The given differential equation is:
(y logey)dydx+x=2 logey.
Rewriting it:
dydx+y logeyx=y2.
This is a linear differential equation of the form:
dydx+P(y)x=Q(y), where:
P(y)=y logey1, Q(y)=y2.
The integrating factor (IF) is given by:
IF=e∫P(y)dy.
Substitute P(y)=y logey1:
∫P(y)dy=∫y logey1dy.
Let u=logey so du=y1dy. The integral becomes:
∫y logey1dy=∫u1du=logeu+C.
Substituting back u=logey:
∫P(y)dy=loge(logey).
Thus, the integrating factor is:
IF=eloge(logey)=logey.
Final Answer:
logey.