Solveeit Logo

Question

Mathematics Question on Differential Equations

The integrating factor of the differential equation (ylogey)dxdy+x=2logey(y \log_e y) \frac{dx}{dy} + x = 2 \log_e y is:

A

logey\log_e y

B

1y\frac{1}{y}

C

yy

D

loge(logey)\log_e(\log_e y)

Answer

logey\log_e y

Explanation

Solution

The given differential equation is:

(y logey)dxdy+x=2 logey.(y~\log_{e}y)\frac{dx}{dy}+x=2~\log_{e}y.

Rewriting it:

dxdy+xy logey=2y.\frac{dx}{dy}+\frac{x}{y~\log_{e}y}=\frac{2}{y}.

This is a linear differential equation of the form:

dxdy+P(y)x=Q(y),\frac{dx}{dy}+P(y)x=Q(y), where:

P(y)=1y logey,   Q(y)=2y.P(y)=\frac{1}{y~\log_{e}y},~~~Q(y)=\frac{2}{y}.

The integrating factor (IF) is given by:

IF=eP(y)dy.IF=e^{\int P(y)dy}.

Substitute P(y)=1y logeyP(y)=\frac{1}{y~\log_{e}y}:

P(y)dy=1y logeydy.\int P(y)dy=\int\frac{1}{y~\log_{e}y}dy.

Let u=logeyu=\log_{e}y so du=1ydydu=\frac{1}{y}dy. The integral becomes:

1y logeydy=1udu=logeu+C.\int\frac{1}{y~\log_{e}y}dy=\int\frac{1}{u}du=\log_{e}u+C.

Substituting back u=logeyu=\log_{e}y:

P(y)dy=loge(logey).\int P(y)dy=\log_{e}(\log_{e}y).

Thus, the integrating factor is:

IF=eloge(logey)=logey.IF=e^{\log_{e}(\log_{e}y)}=\log_{e}y.

Final Answer:

logey.\log_{e}y.