Solveeit Logo

Question

Mathematics Question on integral

The integral ∫sin2⁡xcos2⁡x(sin5⁡x+cos3⁡xsin2⁡x+xcos2⁡x+cos5⁡x)2dx is equal to:

A

(A) 11+cot3x+C\frac{ 1}{1+ \cot^{3}x} + C

B

(B) 11+cot3x+C\frac{ -1}{1+ \cot^{3}x} + C

C

(C) 13(1+cot3x)+C\frac{ 1}{ 3\big(1+ \cot^{3}x\big) } + C

D

(D) 13(1+cot3x)+C\frac{ -1}{ 3\big(1+ \cot^{3}x\big) } + C

Answer

(D) 13(1+cot3x)+C\frac{ -1}{ 3\big(1+ \cot^{3}x\big) } + C

Explanation

Solution

Explanation:
∫sin2⁡xcos2⁡xdx(sin5⁡x+cos3⁡xsin2⁡x+sin3⁡xcos2⁡x+cos5⁡x)2∫sin2⁡x⋅cos2⁡xdx{(sin2⁡x(sin3⁡x+cos3⁡x)+cos2⁡x(sin3⁡x+cos3⁡x)}2∫sin2⁡x⋅cos2⁡xdx{(sin2⁡x+cos2⁡x)(sin3⁡x+cos3⁡x)}2∫sin2⁡xcos2⁡xdx(sin3⁡x+cos3⁡x)2Divide by cos3⁡x in numerator and denominator we get=∫sec2⁡x⋅tan2⁡x(tan3⁡x+1)2dxLet 1+tan3⁡x=t3tan2⁡xsec2⁡xdx=dt=13∫dtt2=−131t+C=−13(1+tan3⁡x)+CHence, the correct option is (D).