Question
Mathematics Question on integral
The integral ∫sin2xcos2x(sin5x+cos3xsin2x+xcos2x+cos5x)2dx is equal to:
A
(A) 1+cot3x1+C
B
(B) 1+cot3x−1+C
C
(C) 3(1+cot3x)1+C
D
(D) 3(1+cot3x)−1+C
Answer
(D) 3(1+cot3x)−1+C
Explanation
Solution
Explanation:
∫sin2xcos2xdx(sin5x+cos3xsin2x+sin3xcos2x+cos5x)2∫sin2x⋅cos2xdx{(sin2x(sin3x+cos3x)+cos2x(sin3x+cos3x)}2∫sin2x⋅cos2xdx{(sin2x+cos2x)(sin3x+cos3x)}2∫sin2xcos2xdx(sin3x+cos3x)2Divide by cos3x in numerator and denominator we get=∫sec2x⋅tan2x(tan3x+1)2dxLet 1+tan3x=t3tan2xsec2xdx=dt=13∫dtt2=−131t+C=−13(1+tan3x)+CHence, the correct option is (D).