Question
Mathematics Question on Application of Integrals
The integral of the function 9−4x21 is:
121loge3−2x3+2x+C, where C is an arbitrary constant
221loge3−x3+x+C, where C is an arbitrary constant
21loge7−x7+x+C, where C is an arbitrary constant
121loge3+2x3−2x+C, where C is an arbitrary constant
121loge3−2x3+2x+C, where C is an arbitrary constant
Solution
Begin by rewriting the denominator 9−4x2:
9−4x2=(3−2x)(3+2x).
The integral becomes:
∫9−4x21dx=∫(3−2x)(3+2x)1dx.
Using partial fraction decomposition:
(3−2x)(3+2x)1=3−2xA+3+2xB.
Equating and solving for A and B:
A=61,B=61.
The integral becomes:
∫9−4x21dx=61∫3−2x1dx+61∫3+2x1dx.
Solving each term:
∫3−2x1dx=−21loge∣3−2x∣,∫3+2x1dx=21loge∣3+2x∣.
Substituting back:
∫9−4x21dx=61(−21loge∣3−2x∣+21loge∣3+2x∣).
Simplify:
∫9−4x21dx=121loge3−2x3+2x+C.