Solveeit Logo

Question

Mathematics Question on Application of Integrals

The integral of the function 194x2\frac{1}{9 - 4x^2} is:

A

112loge3+2x32x+C\frac{1}{12} \log_e \left| \frac{3 + 2x}{3 - 2x} \right| + C, where CC is an arbitrary constant

B

122loge3+x3x+C\frac{1}{22} \log_e \left| \frac{3 + x}{3 - x} \right| + C, where CC is an arbitrary constant

C

12loge7+x7x+C\frac{1}{2} \log_e \left| \frac{7 + x}{7 - x} \right| + C, where CC is an arbitrary constant

D

112loge32x3+2x+C\frac{1}{12} \log_e \left| \frac{3 - 2x}{3 + 2x} \right| + C, where CC is an arbitrary constant

Answer

112loge3+2x32x+C\frac{1}{12} \log_e \left| \frac{3 + 2x}{3 - 2x} \right| + C, where CC is an arbitrary constant

Explanation

Solution

Begin by rewriting the denominator 94x29 - 4x^2:

94x2=(32x)(3+2x).9 - 4x^2 = (3 - 2x)(3 + 2x).

The integral becomes:

194x2dx=1(32x)(3+2x)dx.\int \frac{1}{9 - 4x^2} dx = \int \frac{1}{(3 - 2x)(3 + 2x)} dx.

Using partial fraction decomposition:

1(32x)(3+2x)=A32x+B3+2x.\frac{1}{(3 - 2x)(3 + 2x)} = \frac{A}{3 - 2x} + \frac{B}{3 + 2x}.

Equating and solving for AA and BB:

A=16,B=16.A = \frac{1}{6}, \quad B = \frac{1}{6}.

The integral becomes:

194x2dx=16132xdx+1613+2xdx.\int \frac{1}{9 - 4x^2} dx = \frac{1}{6} \int \frac{1}{3 - 2x} dx + \frac{1}{6} \int \frac{1}{3 + 2x} dx.

Solving each term:

132xdx=12loge32x,13+2xdx=12loge3+2x.\int \frac{1}{3 - 2x} dx = -\frac{1}{2} \log_e |3 - 2x|, \quad \int \frac{1}{3 + 2x} dx = \frac{1}{2} \log_e |3 + 2x|.

Substituting back:

194x2dx=16(12loge32x+12loge3+2x).\int \frac{1}{9 - 4x^2} dx = \frac{1}{6} \left(-\frac{1}{2} \log_e |3 - 2x| + \frac{1}{2} \log_e |3 + 2x| \right).

Simplify:

194x2dx=112loge3+2x32x+C.\int \frac{1}{9 - 4x^2} dx = \frac{1}{12} \log_e \left|\frac{3 + 2x}{3 - 2x}\right| + C.