Solveeit Logo

Question

Question: The integral of \(\int {{e^x}\left( {\sin x + \cos x} \right)dx} \) is: A.\({e^x}\cos x + c\) B...

The integral of ex(sinx+cosx)dx\int {{e^x}\left( {\sin x + \cos x} \right)dx} is:
A.excosx+c{e^x}\cos x + c
B.exsinx+c{e^x}\sin x + c
C.exsecx+c{e^x}\sec x + c
D.None of this

Explanation

Solution

First of all we will take the given equation and break it in two parts by opening the bracket with integration symbols in each. Let these two terms asI1&I2{I_1}\& {I_2}. After that solve any one term and integrate with respect to xx, then put this value in the original equation, thus we will get the answer, and add an integrating constant c with the answer.

Complete step-by-step answer:
We have to integrate the given term i.e.:
ex(sinx+cosx)dx\int {{e^x}\left( {\sin x + \cos x} \right)dx}
Now we can write the given term as:
By separate both functions:
exsinxdx+excosxdx.........(1)\Rightarrow \int {{e^x}\sin xdx + } \int {{e^x}\cos xdx} .........\left( 1 \right)
Let the first term in equation (1)\left( 1 \right) is I1{I_1} and second term is I2{I_2}
Where:
I1={I_1} = exsinxdx\int {{e^x}\sin xdx} $$$$

I2=excosxdx   {I_2} = \int {{e^x}\cos xdx} \\\ \\\

Now differentiate the term I2{I_2} with respect to xx
By using the uvuv rule of integration:
dx=d(uv)dx=udvdx+vdudxdx = d\left( {uv} \right)dx = udvdx + vdudx
We will apply this rule and integrate it:

I2=excosxdx I2=excosxdx(ddx(ex).cosx)dx I2=exsinxexsinxdx   {I_2} = \int {{e^x}\cos xdx} \\\ \Rightarrow {I_2} = {e^x}\int {\cos xdx - \int {\left( {\dfrac{d}{{dx}}\left( {{e^x}} \right).\int {\cos x} } \right)} } dx \\\ \Rightarrow {I_2} = {e^x}\sin x - \int {{e^x}} \sin xdx \\\ \\\

Put the value of I2{I_2}in termI1{I_1}
Thus we get:

I1=exsinxdx+exsinxexsinxdx exsinx+c   {I_1} = \int {{e^x}\sin xdx + {e^x}\sin x - \int {{e^x}\sin xdx} } \\\ \Rightarrow {e^x}\sin x + c \\\ \\\

Where c is integrating constant.
Hence the correct answer is option B.

Note: For the given question we have to remember that to integrate the given equation we have to remember that to break the equation in two integrations like exsinxdx+excosxdx\int {{e^x}\sin xdx + } \int {{e^x}\cos xdx}
called as I1&I2{I_1}\& {I_2} then solve I2{I_2} part of the equation and put this value in equation 11 and add an integrating constant c with this and this is our answer.