Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The integral of x2xx3x2+x1\frac{x^{2}-x}{x^{3}-x^{2}+x-1} w.r.t. x is

A

12log(x2+1+c)\frac{1}{2}log \left(x^{2}+1+c\right)

B

12logx21+c\frac{1}{2}log \left|x^{2}-1\right|+c

C

log(x2+1+c)log \left(x^{2}+1+c\right)

D

logx21+clog \left|x^{2}-1\right|+c

Answer

12log(x2+1+c)\frac{1}{2}log \left(x^{2}+1+c\right)

Explanation

Solution

Let I=x2xx2x2+x1dxI=\int \frac{x^{2 }-x}{x^{2} - x^{2} + x -1}dx =x(x1)x2(x1)+(x1)dx=xdxx2+1= \int \frac{x\left(x-1\right)}{x^{2}\left(x-1\right) + \left(x-1\right)}dx = \int \frac{x\,dx}{x^{2}+1} =122xdx(x2+1)= \frac{1}{2}\int\frac{2x\,dx}{\left(x^{2}+1\right)} Let x2+1=t2xdx=dtx^{2} + 1 = t \Rightarrow 2x\, dx = dt I=12dtt=12logt+c\therefore I = \frac{1}{2}\int \frac{dt}{t} = \frac{1}{2}log \,t + c =12log(x2+1)+c= \frac{1}{2}log \left(x^{2}+1\right)+c where 'c' is the constant of integration.