Solveeit Logo

Question

Question: The integral $\int_{1/2025}^{2025} \frac{1+x^2}{x^2+x^{2022}}dx$ equals...

The integral 1/202520251+x2x2+x2022dx\int_{1/2025}^{2025} \frac{1+x^2}{x^2+x^{2022}}dx equals

Answer

2025 - \frac{1}{2025}

Explanation

Solution

To evaluate the integral I=1/202520251+x2x2+x2022dxI = \int_{1/2025}^{2025} \frac{1+x^2}{x^2+x^{2022}}dx, we can use a standard property of definite integrals.

Let the integral be II. The limits of integration are of the form aa and 1/a1/a, where a=1/2025a = 1/2025. The property states that for an integral a1/af(x)dx\int_a^{1/a} f(x) dx, we can make the substitution x=1/tx = 1/t. Then dx=1/t2dtdx = -1/t^2 dt. When x=ax = a, t=1/at = 1/a. When x=1/ax = 1/a, t=at = a.

Applying this substitution to II: I=1/202520251+x2x2+x2022dxI = \int_{1/2025}^{2025} \frac{1+x^2}{x^2+x^{2022}}dx Substitute x=1/tx = 1/t: I=20251/20251+(1/t)2(1/t)2+(1/t)2022(1t2)dtI = \int_{2025}^{1/2025} \frac{1+(1/t)^2}{(1/t)^2+(1/t)^{2022}} \left(-\frac{1}{t^2}\right) dt I=20251/2025t2+1t21t2+1t20221t2dtI = -\int_{2025}^{1/2025} \frac{\frac{t^2+1}{t^2}}{\frac{1}{t^2}+\frac{1}{t^{2022}}} \frac{1}{t^2} dt I=1/20252025t2+1t2t2020+1t20221t2dtI = \int_{1/2025}^{2025} \frac{\frac{t^2+1}{t^2}}{\frac{t^{2020}+1}{t^{2022}}} \frac{1}{t^2} dt (changing limits and sign) I=1/20252025t2+1t2t2022t2020+11t2dtI = \int_{1/2025}^{2025} \frac{t^2+1}{t^2} \cdot \frac{t^{2022}}{t^{2020}+1} \cdot \frac{1}{t^2} dt I=1/20252025(t2+1)t2018t2020+1dtI = \int_{1/2025}^{2025} \frac{(t^2+1)t^{2018}}{t^{2020}+1} dt

Now, replace tt with xx: I=1/20252025(x2+1)x2018x2020+1dxI = \int_{1/2025}^{2025} \frac{(x^2+1)x^{2018}}{x^{2020}+1} dx (Equation 2)

We have the original integral: I=1/202520251+x2x2+x2022dx=1/202520251+x2x2(1+x2020)dxI = \int_{1/2025}^{2025} \frac{1+x^2}{x^2+x^{2022}}dx = \int_{1/2025}^{2025} \frac{1+x^2}{x^2(1+x^{2020})}dx (Equation 1)

Add Equation 1 and Equation 2: 2I=1/20252025(1+x2x2(1+x2020)+(x2+1)x20181+x2020)dx2I = \int_{1/2025}^{2025} \left( \frac{1+x^2}{x^2(1+x^{2020})} + \frac{(x^2+1)x^{2018}}{1+x^{2020}} \right) dx Factor out (1+x2)(1+x^2) from the integrand: 2I=1/20252025(1+x2)(1x2(1+x2020)+x20181+x2020)dx2I = \int_{1/2025}^{2025} (1+x^2) \left( \frac{1}{x^2(1+x^{2020})} + \frac{x^{2018}}{1+x^{2020}} \right) dx Combine the fractions inside the parenthesis by finding a common denominator, which is x2(1+x2020)x^2(1+x^{2020}): 1x2(1+x2020)+x2018x2x2(1+x2020)=1+x2020x2(1+x2020)\frac{1}{x^2(1+x^{2020})} + \frac{x^{2018} \cdot x^2}{x^2(1+x^{2020})} = \frac{1+x^{2020}}{x^2(1+x^{2020})} This simplifies to 1x2\frac{1}{x^2}.

Substitute this back into the integral: 2I=1/20252025(1+x2)(1x2)dx2I = \int_{1/2025}^{2025} (1+x^2) \left( \frac{1}{x^2} \right) dx 2I=1/20252025(1x2+x2x2)dx2I = \int_{1/2025}^{2025} \left( \frac{1}{x^2} + \frac{x^2}{x^2} \right) dx 2I=1/20252025(x2+1)dx2I = \int_{1/2025}^{2025} \left( x^{-2} + 1 \right) dx

Now, evaluate the integral: 2I=[1x+x]1/202520252I = \left[ -\frac{1}{x} + x \right]_{1/2025}^{2025} 2I=(12025+2025)(11/2025+12025)2I = \left( -\frac{1}{2025} + 2025 \right) - \left( -\frac{1}{1/2025} + \frac{1}{2025} \right) 2I=(12025+2025)(2025+12025)2I = \left( -\frac{1}{2025} + 2025 \right) - \left( -2025 + \frac{1}{2025} \right) 2I=12025+2025+2025120252I = -\frac{1}{2025} + 2025 + 2025 - \frac{1}{2025} 2I=2×20252×120252I = 2 \times 2025 - 2 \times \frac{1}{2025} 2I=2(202512025)2I = 2 \left( 2025 - \frac{1}{2025} \right) Divide by 2 to find II: I=202512025I = 2025 - \frac{1}{2025}