Question
Question: The integral $\int_{1/2025}^{2025} \frac{1+x^2}{x^2+x^{2022}}dx$ equals...
The integral ∫1/20252025x2+x20221+x2dx equals

2025 - \frac{1}{2025}
Solution
To evaluate the integral I=∫1/20252025x2+x20221+x2dx, we can use a standard property of definite integrals.
Let the integral be I. The limits of integration are of the form a and 1/a, where a=1/2025. The property states that for an integral ∫a1/af(x)dx, we can make the substitution x=1/t. Then dx=−1/t2dt. When x=a, t=1/a. When x=1/a, t=a.
Applying this substitution to I: I=∫1/20252025x2+x20221+x2dx Substitute x=1/t: I=∫20251/2025(1/t)2+(1/t)20221+(1/t)2(−t21)dt I=−∫20251/2025t21+t20221t2t2+1t21dt I=∫1/20252025t2022t2020+1t2t2+1t21dt (changing limits and sign) I=∫1/20252025t2t2+1⋅t2020+1t2022⋅t21dt I=∫1/20252025t2020+1(t2+1)t2018dt
Now, replace t with x: I=∫1/20252025x2020+1(x2+1)x2018dx (Equation 2)
We have the original integral: I=∫1/20252025x2+x20221+x2dx=∫1/20252025x2(1+x2020)1+x2dx (Equation 1)
Add Equation 1 and Equation 2: 2I=∫1/20252025(x2(1+x2020)1+x2+1+x2020(x2+1)x2018)dx Factor out (1+x2) from the integrand: 2I=∫1/20252025(1+x2)(x2(1+x2020)1+1+x2020x2018)dx Combine the fractions inside the parenthesis by finding a common denominator, which is x2(1+x2020): x2(1+x2020)1+x2(1+x2020)x2018⋅x2=x2(1+x2020)1+x2020 This simplifies to x21.
Substitute this back into the integral: 2I=∫1/20252025(1+x2)(x21)dx 2I=∫1/20252025(x21+x2x2)dx 2I=∫1/20252025(x−2+1)dx
Now, evaluate the integral: 2I=[−x1+x]1/20252025 2I=(−20251+2025)−(−1/20251+20251) 2I=(−20251+2025)−(−2025+20251) 2I=−20251+2025+2025−20251 2I=2×2025−2×20251 2I=2(2025−20251) Divide by 2 to find I: I=2025−20251