Solveeit Logo

Question

Question: The integral $\int_{0}^{\pi/4} \frac{cosx-sinx}{2+sin(2x)} dx$ equals...

The integral 0π/4cosxsinx2+sin(2x)dx\int_{0}^{\pi/4} \frac{cosx-sinx}{2+sin(2x)} dx equals

Answer

arctan(2)π4\arctan(\sqrt{2}) - \frac{\pi}{4}

Explanation

Solution

The integral to evaluate is I=0π/4cosxsinx2+sin(2x)dxI = \int_{0}^{\pi/4} \frac{cosx-sinx}{2+sin(2x)} dx.

We observe the numerator cosxsinxcosx-sinx. This is the derivative of sinx+cosxsinx+cosx. Let's make the substitution t=sinx+cosxt = sinx+cosx. Then, differentiating tt with respect to xx, we get dt=(cosxsinx)dxdt = (cosx-sinx)dx.

Next, we need to express the term sin(2x)sin(2x) in the denominator in terms of tt. We know that t2=(sinx+cosx)2=sin2x+cos2x+2sinxcosxt^2 = (sinx+cosx)^2 = sin^2x+cos^2x+2sinxcosx. Since sin2x+cos2x=1sin^2x+cos^2x=1 and 2sinxcosx=sin(2x)2sinxcosx=sin(2x), we have: t2=1+sin(2x)t^2 = 1+sin(2x) From this, we can write sin(2x)=t21sin(2x) = t^2-1.

Now, we need to change the limits of integration according to the substitution: When x=0x=0: t=sin(0)+cos(0)=0+1=1t = sin(0)+cos(0) = 0+1 = 1. When x=π/4x=\pi/4: t=sin(π/4)+cos(π/4)=12+12=22=2t = sin(\pi/4)+cos(\pi/4) = \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}.

Substitute these into the integral: I=12dt2+(t21)I = \int_{1}^{\sqrt{2}} \frac{dt}{2+(t^2-1)} I=12dtt2+1I = \int_{1}^{\sqrt{2}} \frac{dt}{t^2+1} This is a standard integral of the form 1a2+x2dx=1aarctan(xa)+C\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C. Here, a=1a=1. I=[arctan(t)]12I = \left[\arctan(t)\right]_{1}^{\sqrt{2}} Now, apply the limits of integration: I=arctan(2)arctan(1)I = \arctan(\sqrt{2}) - \arctan(1) We know that arctan(1)=π4\arctan(1) = \frac{\pi}{4}. Therefore, the value of the integral is: I=arctan(2)π4I = \arctan(\sqrt{2}) - \frac{\pi}{4}