Solveeit Logo

Question

Question: The integral $\int_0^\pi \frac{8xdx}{4\cos^2x + \sin^2x}$ is equal to...

The integral 0π8xdx4cos2x+sin2x\int_0^\pi \frac{8xdx}{4\cos^2x + \sin^2x} is equal to

A

2π22\pi^2

B

4π24\pi^2

C

π2\pi^2

Answer

2\pi^2

Explanation

Solution

The integral to be evaluated is I=0π8xdx4cos2x+sin2xI = \int_0^\pi \frac{8xdx}{4\cos^2x + \sin^2x}.

Step 1: Apply the property of definite integrals 0af(x)dx=0af(ax)dx\int_0^a f(x) dx = \int_0^a f(a-x) dx.
Let the given integral be II. Here, a=πa = \pi. I=0π8(πx)dx4cos2(πx)+sin2(πx)I = \int_0^\pi \frac{8(\pi-x)dx}{4\cos^2(\pi-x) + \sin^2(\pi-x)}
Since cos(πx)=cosx\cos(\pi-x) = -\cos x and sin(πx)=sinx\sin(\pi-x) = \sin x, we have cos2(πx)=cos2x\cos^2(\pi-x) = \cos^2 x and sin2(πx)=sin2x\sin^2(\pi-x) = \sin^2 x.
So, I=0π8(πx)dx4cos2x+sin2xI = \int_0^\pi \frac{8(\pi-x)dx}{4\cos^2x + \sin^2x}

Step 2: Add the original integral and the transformed integral.
Adding the original integral I=0π8xdx4cos2x+sin2xI = \int_0^\pi \frac{8xdx}{4\cos^2x + \sin^2x} to the transformed integral:
2I=0π8xdx4cos2x+sin2x+0π8(πx)dx4cos2x+sin2x2I = \int_0^\pi \frac{8xdx}{4\cos^2x + \sin^2x} + \int_0^\pi \frac{8(\pi-x)dx}{4\cos^2x + \sin^2x}
2I=0π8x+8(πx)4cos2x+sin2xdx2I = \int_0^\pi \frac{8x + 8(\pi-x)}{4\cos^2x + \sin^2x} dx
2I=0π8x+8π8x4cos2x+sin2xdx2I = \int_0^\pi \frac{8x + 8\pi - 8x}{4\cos^2x + \sin^2x} dx
2I=0π8π4cos2x+sin2xdx2I = \int_0^\pi \frac{8\pi}{4\cos^2x + \sin^2x} dx
2I=8π0πdx4cos2x+sin2x2I = 8\pi \int_0^\pi \frac{dx}{4\cos^2x + \sin^2x}
I=4π0πdx4cos2x+sin2xI = 4\pi \int_0^\pi \frac{dx}{4\cos^2x + \sin^2x}

Step 3: Evaluate the new integral J=0πdx4cos2x+sin2xJ = \int_0^\pi \frac{dx}{4\cos^2x + \sin^2x}.
Let f(x)=14cos2x+sin2xf(x) = \frac{1}{4\cos^2x + \sin^2x}. We observe that f(πx)=14cos2(πx)+sin2(πx)=14cos2x+sin2x=f(x)f(\pi-x) = \frac{1}{4\cos^2(\pi-x) + \sin^2(\pi-x)} = \frac{1}{4\cos^2x + \sin^2x} = f(x).
This allows us to use the property 02af(x)dx=20af(x)dx\int_0^{2a} f(x) dx = 2\int_0^a f(x) dx where 2a=π2a=\pi, so a=π/2a=\pi/2.
J=20π/2dx4cos2x+sin2xJ = 2 \int_0^{\pi/2} \frac{dx}{4\cos^2x + \sin^2x}

Step 4: Simplify the integrand by dividing the numerator and denominator by cos2x\cos^2x.
J=20π/21cos2x4cos2xcos2x+sin2xcos2xdxJ = 2 \int_0^{\pi/2} \frac{\frac{1}{\cos^2x}}{\frac{4\cos^2x}{\cos^2x} + \frac{\sin^2x}{\cos^2x}} dx
J=20π/2sec2x4+tan2xdxJ = 2 \int_0^{\pi/2} \frac{\sec^2x}{4 + \tan^2x} dx

Step 5: Use substitution to evaluate the integral.
Let t=tanxt = \tan x. Then dt=sec2xdxdt = \sec^2x dx.
When x=0x=0, t=tan0=0t = \tan 0 = 0.
When x=π/2x=\pi/2, t=tan(π/2)t = \tan(\pi/2) \to \infty.
J=20dt4+t2J = 2 \int_0^\infty \frac{dt}{4 + t^2}
This is a standard integral of the form dxa2+x2=1aarctan(xa)\int \frac{dx}{a^2+x^2} = \frac{1}{a}\arctan\left(\frac{x}{a}\right). Here a2=4a^2=4, so a=2a=2.
J=2[12arctan(t2)]0J = 2 \left[ \frac{1}{2} \arctan\left(\frac{t}{2}\right) \right]_0^\infty
J=[arctan(t2)]0J = \left[ \arctan\left(\frac{t}{2}\right) \right]_0^\infty
J=limtarctan(t2)arctan(02)J = \lim_{t \to \infty} \arctan\left(\frac{t}{2}\right) - \arctan\left(\frac{0}{2}\right)
J=π20J = \frac{\pi}{2} - 0
J=π2J = \frac{\pi}{2}

Step 6: Substitute the value of JJ back into the expression for II.
I=4πJI = 4\pi J
I=4π(π2)I = 4\pi \left(\frac{\pi}{2}\right)
I=2π2I = 2\pi^2

The final answer is 2π22\pi^2.