Question
Question: The integral \(\int_{0}^{a}\frac{g(x)}{f(x) + f(a–x)}\) vanishes if -...
The integral ∫0af(x)+f(a–x)g(x) vanishes if -
A
g(x) is odd
B
f(x) = f (a – x)
C
g(x) = – g(a – x)
D
f(a – x) = g(x)
Answer
g(x) = – g(a – x)
Explanation
Solution
I = ∫0af(x)+f(a–x)g(x) then I = ∫0af(x)+f(a–x)g(a–x)
Ž 2I = ∫0af(x)+f(a–x)g(x)+g(a–x)
Ž I = 21∫0af(x)+f(a–x)g(x)+g(a–x)
= 0 (vanishes) if –g(x) = g(a – x)