Solveeit Logo

Question

Question: The integral \(\int_{- \infty}^{\infty}{\frac{1}{e^{- x} + e^{x}}dx}\) is...

The integral 1ex+exdx\int_{- \infty}^{\infty}{\frac{1}{e^{- x} + e^{x}}dx} is

A

Convergent and equal to π/6

B

Convergent and equal to π/4

C

Convergent and equal to π/3

D

Convergent and equal to π/2

Answer

Convergent and equal to π/2

Explanation

Solution

I=1ex+exdx=ex1+e2xdxI = \int_{- \infty}^{\infty}{\frac{1}{e^{- x} + e^{x}}dx} = \int_{- \infty}^{\infty}{\frac{e^{x}}{1 + e^{2x}}dx}

Put ex=texdx=dte^{x} = t \Rightarrow e^{x}dx = dt

I=011+t2dtI = \int_{0}^{\infty}{\frac{1}{1 + t^{2}}dt}I=[tan1t]0=[tan1tan10]I = \lbrack\tan^{- 1}t\rbrack_{0}^{\infty} = \lbrack\tan^{- 1}\infty - \tan^{- 1}0\rbrack

I=π/2I = \pi ⥂ / ⥂ 2, which is finite so convergent.