Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The integral xcos1(1x21+x2)dx(x>0)\int x \,cos^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) \,dx\, \left(x > 0\right) is equal to :

A

x+(1+x2)tan1x+c- x + (1 + x^2) tan^{-1} x + c

B

x(1+x2)cot1x+cx- (1 + x^2) cot^{-1} x + c

C

x+(1+x2)cot1x+c- x + (1 + x^2) cot^{-1} x + c

D

x(1+x2)tan1x+cx- (1 + x^2) tan^{-1} x + c

Answer

x+(1+x2)tan1x+c- x + (1 + x^2) tan^{-1} x + c

Explanation

Solution

put x=tanθcos1(1x21+x2)=cos1(cos2θ)=2θ\,x = tan\,\theta cos^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) = cos^{-1}\left(cos2\theta\right) = 2\theta
tanθ(2θ)sec2θdθ\int tan\,\theta \left(2\theta \right) sec^{2} \,\theta\, d\theta
=2θ.tanθsec2θdθ2(dθdθtanθsec2θdθ)dθ= 2\theta.\int tan\,\theta \, sec^{2} \,\theta \, d\theta - 2\int\left(\frac{d\theta}{d\theta}\int tan\,\theta \, sec^{2} \,\theta \, d\theta \right)d\theta
=2θtan2θ22tan2θ2dθ= 2\theta \frac{tan^{2}\theta}{2}-2\int\frac{tan^{2}\theta }{2}d\theta
=θtan2θ(sec2θ1)dθ= \theta\,tan^{2}\,\theta-\int\left(sec^{2}\,\theta-1\right)d\theta
=θtan2θtanθ+θ+C= \theta \,tan^{2}\,\theta -tan\theta +\theta +C
=tan1x.x2x+tan1+C= tan^{-1}x. x^{2}-x + tan^{-1}+C
=x+(1+x2)tan1x+C= - x + \left(1 + x^{2}\right) tan^{-1}x + C