Solveeit Logo

Question

Question: The integral \(\int {x{{\cos }^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)dx} \) is equ...

The integral xcos1(1x21+x2)dx\int {x{{\cos }^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)dx} is equal to
A) x+(1+x2)cot1x+c - x + \left( {1 + {x^2}} \right){\cot ^{ - 1}}x + c
B) x+(1+x2)tan1x+c - x + \left( {1 + {x^2}} \right){\tan ^{ - 1}}x + c
C) x(1+x2)tan1x+c - x - \left( {1 + {x^2}} \right){\tan ^{ - 1}}x + c
D) x(1+x2)cot1x+c - x - \left( {1 + {x^2}} \right){\cot ^{ - 1}}x + c

Explanation

Solution

In order to find the given integral we need to substitute x=tanθx = \tan \theta ,then differentiating it we get dx=sec2θdθdx = {\sec ^2}\theta d\theta .and then by using identity 1tan2θ1+tan2θ=cos2θ\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} = \cos 2\theta and cos1(cosθ)=θ{\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta we get the integral 2θtanθsec2θdθ\int {2\theta \tan \theta s} e{c^2}\theta d\theta and we need to integrate this by using uvdx=uvdx(dudxvdx)dx\int {uvdx = u\int {vdx} - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} dx} ,where u=2θu = 2\theta and v=tanθsec2θv = \tan \theta {\sec ^2}\theta and further simplification is done by using the identity sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1and finally replacing by x we get the required answer.

Complete step by step solution:
We are asked to find the integral of xcos1(1x21+x2)dx\int {x{{\cos }^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)dx}
So lets start by using substitution method
Lets take x=tanθx = \tan \theta
Then differentiating it we get dx=sec2θdθdx = {\sec ^2}\theta d\theta
tanθcos1(1tan2θ1+tan2θ)sec2θdθ\Rightarrow \int {\tan \theta {{\cos }^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right)s} e{c^2}\theta d\theta
Now we know the identity 1tan2θ1+tan2θ=cos2θ\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} = \cos 2\theta
Using this in the above equation we get
tanθcos1(cos2θ)sec2θdθ\Rightarrow \int {\tan \theta {{\cos }^{ - 1}}\left( {\cos 2\theta } \right)s} e{c^2}\theta d\theta
And we know that cos1(cosθ)=θ{\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta
Using this we get
2θtanθsec2θdθ\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta
Now here we can do integration by parts
uvdx=uvdx(dudxvdx)dx\int {uvdx = u\int {vdx} - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} dx}
Here u=2θu = 2\theta and v=tanθsec2θv = \tan \theta {\sec ^2}\theta
Hence we get

2θtanθsec2θdθ=2θtanθsec2θdθ(d(2θ)dθtanθsec2θdθ)dθ 2θtanθsec2θdθ=2θtanθsec2θdθ(2tanθsec2θdθ)dθ  \Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = 2\theta \int {\tan \theta {{\sec }^2}\theta d\theta } - \int {\left( {\dfrac{{d(2\theta )}}{{d\theta }}\int {\tan \theta {{\sec }^2}\theta d\theta } } \right)} d\theta \\\ \Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = 2\theta \int {\tan \theta {{\sec }^2}\theta d\theta } - \int {\left( {2\int {\tan \theta {{\sec }^2}\theta d\theta } } \right)} d\theta \\\

Now once again we need to use substitution method to solve the integrals
Lets take t=tanθt = \tan \theta
Then differentiating it we get dt=sec2θdθdt = {\sec ^2}\theta d\theta

2θtanθsec2θdθ=2θtdt(2tdt)dtsec2θ 2θtanθsec2θdθ=2θt22(2t22)dtsec2θ 2θtanθsec2θdθ=θt2(t2)dtsec2θ  \Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = 2\theta \int {\operatorname{t} dt} - \int {\left( {2\int {tdt} } \right)} \dfrac{{dt}}{{{{\sec }^2}\theta }} \\\ \Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = 2\theta \dfrac{{{t^2}}}{2} - \int {\left( {2\dfrac{{{t^2}}}{2}} \right)} \dfrac{{dt}}{{{{\sec }^2}\theta }} \\\ \Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {t^2} - \int {\left( {{t^2}} \right)} \dfrac{{dt}}{{{{\sec }^2}\theta }} \\\

Now replacing t by tanθ\tan \theta
2θtanθsec2θdθ=θtan2θ(tan2θ)dθ\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {\tan ^2}\theta - \int {\left( {{{\tan }^2}\theta } \right)} d\theta
We know that by using the identity sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1
We can write it as sec2θ1=tan2θ{\sec ^2}\theta - 1 = {\tan ^2}\theta
Using this we get

2θtanθsec2θdθ=θtan2θ(sec2θ1)dθ 2θtanθsec2θdθ=θtan2θ[sec2θdθdθ] 2θtanθsec2θdθ=θtan2θ[tanθθ] 2θtanθsec2θdθ=θtan2θtanθ+θ 2θtanθsec2θdθ=θ[1+tan2θ]tanθ  \Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {\tan ^2}\theta - \int {\left( {{{\sec }^2}\theta - 1} \right)} d\theta \\\ \Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {\tan ^2}\theta - \left[ {\int {{{\sec }^2}\theta } d\theta - \int {d\theta } } \right] \\\ \Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {\tan ^2}\theta - \left[ {\tan \theta - \theta } \right] \\\ \Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta {\tan ^2}\theta - \tan \theta + \theta \\\ \Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = \theta \left[ {1 + {{\tan }^2}\theta } \right] - \tan \theta \\\

Now replacing θ\theta by x we get
2θtanθsec2θdθ=tan1x[1+x2]x\Rightarrow \int {2\theta \tan \theta s} e{c^2}\theta d\theta = {\tan ^{ - 1}}x\left[ {1 + {x^2}} \right] - x
Hence we get
xcos1(1x21+x2)dx=x+(1+x2)tan1x+c\Rightarrow \int {x{{\cos }^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)dx} = - x + \left( {1 + {x^2}} \right){\tan ^{ - 1}}x + c

Therefore the correct option is B.

Note:
Steps to keep in mind while solving trigonometric problems are

  1. Always start from the more complex side
  2. Express everything into sine and cosine
  3. Combine terms into a single fraction
  4. Use Pythagorean identities to transform between sin2x and cos2x{\sin ^2}x{\text{ and }}{\cos ^2}x
  5. Know when to apply double angle formula
  6. Know when to apply addition formula
  7. Good old expand/ factorize/ simplify/ cancelling
  8. Integration, in mathematics, technique of finding a function g(x) the derivative of which, Dg(x), is equal to a given function f(x). This is indicated by the integral sign \int {} as in f(x)\int {f(x)} , usually called the indefinite integral of the function.