Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

The integral 169x2\int \sqrt{16-9x^2} dxdx equals

A

x2169x2+83sin1(3x4)+C\frac{x}{2}\sqrt{16-9x^{2}}+\frac{8}{3}sin^{-1}\left(\frac{3x}{4}\right)+C

B

3x2169x2+16sin1(3x4)+C\frac{3x}{2}\sqrt{16-9x^{2}}+ 16 sin^{-1} \left(\frac{3x}{4}\right)+C

C

π2sin1(3x4)+9x2+C\frac{\pi}{2} sin^{-1} (\frac {3x}{4}) + \frac{9x}{2} +C

D

NoneoftheaboveNone\, of\, the\, above

Answer

x2169x2+83sin1(3x4)+C\frac{x}{2}\sqrt{16-9x^{2}}+\frac{8}{3}sin^{-1}\left(\frac{3x}{4}\right)+C

Explanation

Solution

Let I=169x2dx I = \int \sqrt{16-9x^2} \,dx
=9(169x2)dx= \int \sqrt{9(\frac{16}{9} - x^2)} \,dx
=3(43)2x2dx= 3 \int \sqrt{(\frac{4}{3})^2 - x^2} \,dx
=3[x2×169x23+(43)22sin1(x43)]+C= 3\left[\frac{x}{2}\times \frac{\sqrt{16-9x^{2}}}{3}+\frac{\left(\frac{4}{3}\right)^{2}}{2} sin^{-1}\left(\frac{x}{\frac{4}{3}}\right)\right] + C
=3[x2×169x23+169×2sin1(3x4)]+C= 3\left[\frac{x}{2}\times \frac{\sqrt{16-9x^{2}}}{3} + \frac{16}{9\times2}sin^{-1}\left(\frac{3x}{4}\right)\right]+C
=x2169x2+83sin1(3x4)+C= \frac{x}{2}\sqrt{16-9x^{2}} + \frac{8}{3} sin^{-1}\left(\frac{3x}{4}\right)+ C