Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

The integral 1+2cotx(cosecx+cotx)dx(0<x<π2)\int \sqrt{ 1 + 2 \cot \, x (cosec \, x + \cot \, x) } dx \, \left( 0 < x < \frac{\pi}{2} \right) is equal to : (where CC is a constant of integration)

A

4log(sinx2)+C4 \log\left(\sin \frac{x}{2}\right) + C

B

2log(sinx2)+C2 \log\left(\sin \frac{x}{2}\right) + C

C

2log(cosx2)+C2 \log\left(\cos\frac{x}{2}\right) + C

D

4log(cosx2)+C4 \log\left(\cos\frac{x}{2}\right) + C

Answer

2log(sinx2)+C2 \log\left(\sin \frac{x}{2}\right) + C

Explanation

Solution

(+2cotxcosecx+cosec2x+cotx)dx\int\left(\sqrt{+2cot x cos ecx + cos ec^{2}x + cot x}\right)dx cosx+cotxdx\int cos | x + cot x | dx (cosec+cotx)dx\int\left(cos ec + cot x\right)dx cosecdx\int cosec dx 2log(log(x2)+c)2log\left(log\left(x_{2} \right) + c\right)