Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The integral sec2/3xcosec4/3xdx\int sec^{2/3} x cosec^{4/3}x\, dx is equal to (Hence CC is a constant of integration)

A

3tan1/3x+C3 tan^{-1/3}x + C

B

34tan4/3x+C-\frac{3}{4} tan^{-4/3} x +C

C

3cot1/3x+c-3 cot^{-1/3}x +c

D

3tan1/3x+C-3 tan^{-1/3}x +C

Answer

3tan1/3x+C-3 tan^{-1/3}x +C

Explanation

Solution

The correct answer is D:I=3(tanx)1/3+cI = \frac{-3}{(tan x)^{1/3}}+c
I=dx(sinx)4/3.(cosx)2/3I = \int \frac{dx}{(sin x)^{4/3} . (cos x)^{2/3}}
I=dx(sinxcosx)4/3.cos2xI = \int \frac{dx}{\bigg(\frac{sin x}{cos x}\bigg)^{4/3} . cos^2 x}
I=sec2x(tanx)4/3dx\Rightarrow \, I = \int \frac{sec^2 x}{(tan x)^{4/3}} dx
put tanx = t sec2xdx=dt\Rightarrow \, \, sec^2 x dx = dt
I=dtt4/3I=3t1/3+c\therefore \, \, I = \int \frac{dt}{t^{4/3}} \Rightarrow \, I = \frac{-3}{t^{1/3}} +c
I=3(tanx)1/3+c\Rightarrow \, \, \, I = \frac{-3}{(tan x)^{1/3}}+c
integration