Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The integral 0π/2sinxcosxdx\int^{\pi/2}_{0}\left|sin\,x-cos\,x\right|dx is equal to :

A

222\sqrt{2}

B

2(21)2\left(\sqrt{2}-1\right)

C

2+1\sqrt{2}+1

D

None of these

Answer

2(21)2\left(\sqrt{2}-1\right)

Explanation

Solution

We have cosxsinxfor0xπ4cos\,x \ge sin\,x for 0\le x\le\frac{\pi}{4} and sinxcosxforπ4xπ2sin\,x \ge cos\,x for \frac{\pi}{4}\le x \le\frac{\pi}{2} 0π2sinxcosxdx\therefore \int^{\frac{\pi}{2}}_{0}\left|sin\,x-cos\,x\right|dx =0π4(cosxsinx)dx+π4π2(sinxcosx)dx=\int^{\frac{\pi}{4}}_{0}\left(cos\,x-sin\,x\right)dx+\int^{\frac{\pi}{2}}_{\frac{\pi}{4}}\left(sin\,x-cos\,x\right)dx =[sinx+cosx]0π4+[cosxsinx]π4π2=\left[sin\,x+cos\,x\right]^{\frac{\pi}{4}}_{0}+\left[-cos\,x-sin\,x\right]^{\frac{\pi}{2}}_{\frac{\pi}{4}} =[12+1201][0+11212]=\left[\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-0-1\right]-\left[0+1-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right] 211+2=222\sqrt{2}-1-1+\sqrt{2}=2\sqrt{2}-2