Solveeit Logo

Question

Question: The integral \[\int\limits_{\pi /24}^{5\pi /24} {\dfrac{{dx}}{{1 + \sqrt[3]{{\tan 2x}}}}} \] is equa...

The integral π/245π/24dx1+tan2x3\int\limits_{\pi /24}^{5\pi /24} {\dfrac{{dx}}{{1 + \sqrt[3]{{\tan 2x}}}}} is equal to
(a) π18\dfrac{\pi }{{18}}
(b) π3\dfrac{\pi }{3}
(c) π12\dfrac{\pi }{{12}}
(d) π6\dfrac{\pi }{6}

Explanation

Solution

Here in the question, we are required to find the value of the definite integral. We will convert the tangent to sine and cosine and simplify the expression to get an equation. Then, we will use the property of definite integral and simplify it to get another equation. We will then add the two equations and simplify the expression. Then we will substitute the limits to get the value of the integral.
Formula Used: The property of definite integrals abf(x)dx=abf(a+bx)dx\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {a + b - x} \right)dx} . The sine and cosine of two complementary angles is given by sin(π2x)=cosx\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x and cos(π2x)=sinx\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x.

Complete step by step solution:
We will use the formula tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} and the property of definite integrals abf(x)dx=abf(a+bx)dx\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {a + b - x} \right)dx} to get the value of the integral.
First, let I=π/245π/24dx1+tan2x3I = \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{dx}}{{1 + \sqrt[3]{{\tan 2x}}}}} .
We know that the tangent of an angle is given by tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}.
Therefore, we get
tan2x=sin2xcos2x\tan 2x = \dfrac{{\sin 2x}}{{\cos 2x}}
Substituting tan2x=sin2xcos2x\tan 2x = \dfrac{{\sin 2x}}{{\cos 2x}} in the equation I=π/245π/24dx1+tan2x3I = \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{dx}}{{1 + \sqrt[3]{{\tan 2x}}}}} , we get
I=π/245π/24dx1+sin2xcos2x3I = \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{dx}}{{1 + \sqrt[3]{{\dfrac{{\sin 2x}}{{\cos 2x}}}}}}}
Simplifying the denominator, we get
I=π/245π/24dx1+sin2x3cos2x3 I=π/245π/24dxcos2x3+sin2x3cos2x3\begin{array}{l} \Rightarrow I = \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{dx}}{{1 + \dfrac{{\sqrt[3]{{\sin 2x}}}}{{\sqrt[3]{{\cos 2x}}}}}}} \\\ \Rightarrow I = \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{dx}}{{\dfrac{{\sqrt[3]{{\cos 2x}} + \sqrt[3]{{\sin 2x}}}}{{\sqrt[3]{{\cos 2x}}}}}}} \end{array}
Multiplying the numerator and denominator by cos2x3\sqrt[3]{{\cos 2x}}, and rewriting the equation, we get
I=π/245π/24cos2x3cos2x3+sin2x3dx I=π/245π/24cos2x3sin2x3+cos2x3dx(1)\begin{array}{l} \Rightarrow I = \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{\sqrt[3]{{\cos 2x}}}}{{\sqrt[3]{{\cos 2x}} + \sqrt[3]{{\sin 2x}}}}} dx\\\ \Rightarrow I = \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{\sqrt[3]{{\cos 2x}}}}{{\sqrt[3]{{\sin 2x}} + \sqrt[3]{{\cos 2x}}}}} dx \ldots \ldots \ldots \left( 1 \right)\end{array}
Now, using the property of definite integrals abf(x)dx=abf(a+bx)dx\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {a + b - x} \right)dx} , we will simplify the above expression.
Therefore, we get
I=π/245π/24cos2(π24+5π24x)3sin2(π24+5π24x)3+cos2(π24+5π24x)3dx\Rightarrow I = \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{\sqrt[3]{{\cos 2\left( {\dfrac{\pi }{{24}} + \dfrac{{5\pi }}{{24}} - x} \right)}}}}{{\sqrt[3]{{\sin 2\left( {\dfrac{\pi }{{24}} + \dfrac{{5\pi }}{{24}} - x} \right)}} + \sqrt[3]{{\cos 2\left( {\dfrac{\pi }{{24}} + \dfrac{{5\pi }}{{24}} - x} \right)}}}}} dx
Adding and subtracting the terms, we get
I=π/245π/24cos2(6π24x)3sin2(6π24x)3+cos2(6π24x)3dx I=π/245π/24cos2(π4x)3sin2(π4x)3+cos2(π4x)3dx\begin{array}{l} \Rightarrow I = \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{\sqrt[3]{{\cos 2\left( {\dfrac{{6\pi }}{{24}} - x} \right)}}}}{{\sqrt[3]{{\sin 2\left( {\dfrac{{6\pi }}{{24}} - x} \right)}} + \sqrt[3]{{\cos 2\left( {\dfrac{{6\pi }}{{24}} - x} \right)}}}}} dx\\\ \Rightarrow I = \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{\sqrt[3]{{\cos 2\left( {\dfrac{\pi }{4} - x} \right)}}}}{{\sqrt[3]{{\sin 2\left( {\dfrac{\pi }{4} - x} \right)}} + \sqrt[3]{{\cos 2\left( {\dfrac{\pi }{4} - x} \right)}}}}} dx\end{array}
Multiplying (π4x)\left( {\dfrac{\pi }{4} - x} \right) by 2 in the equation, we get
I=π/245π/24cos(π22x)3sin(π22x)3+cos(π22x)3dx\Rightarrow I = \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{\sqrt[3]{{\cos \left( {\dfrac{\pi }{2} - 2x} \right)}}}}{{\sqrt[3]{{\sin \left( {\dfrac{\pi }{2} - 2x} \right)}} + \sqrt[3]{{\cos \left( {\dfrac{\pi }{2} - 2x} \right)}}}}} dx
Now, we know that sine and cosine of two complementary angles are equal, that is sin(π2x)=cosx\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x and cos(π2x)=sinx\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x.
Therefore, we get cos(π22x)=sin2x\cos \left( {\dfrac{\pi }{2} - 2x} \right) = \sin 2x and sin(π22x)=cos2x\sin \left( {\dfrac{\pi }{2} - 2x} \right) = \cos 2x.
Substituting cos(π22x)=sin2x\cos \left( {\dfrac{\pi }{2} - 2x} \right) = \sin 2x and sin(π22x)=cos2x\sin \left( {\dfrac{\pi }{2} - 2x} \right) = \cos 2x in the equation I=π/245π/24cos(π22x)3sin(π22x)3+cos(π22x)3dxI = \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{\sqrt[3]{{\cos \left( {\dfrac{\pi }{2} - 2x} \right)}}}}{{\sqrt[3]{{\sin \left( {\dfrac{\pi }{2} - 2x} \right)}} + \sqrt[3]{{\cos \left( {\dfrac{\pi }{2} - 2x} \right)}}}}} dx, we get
I=π/245π/24sin2x3cos2x3+sin2x3dx\Rightarrow I = \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{\sqrt[3]{{\sin 2x}}}}{{\sqrt[3]{{\cos 2x}} + \sqrt[3]{{\sin 2x}}}}} dx
Rewriting the equation, we get
I=π/245π/24sin2x3sin2x3+cos2x3dx(2)\Rightarrow I = \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{\sqrt[3]{{\sin 2x}}}}{{\sqrt[3]{{\sin 2x}} + \sqrt[3]{{\cos 2x}}}}} dx \ldots \ldots \ldots \left( 2 \right)
Now, adding equations (1)\left( 1 \right) and (2)\left( 2 \right), we get
I+I=π/245π/24cos2x3sin2x3+cos2x3dx+π/245π/24sin2x3sin2x3+cos2x3dx 2I=π/245π/24cos2x3sin2x3+cos2x3dx+π/245π/24sin2x3sin2x3+cos2x3dx\begin{array}{l}I + I = \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{\sqrt[3]{{\cos 2x}}}}{{\sqrt[3]{{\sin 2x}} + \sqrt[3]{{\cos 2x}}}}} dx + \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{\sqrt[3]{{\sin 2x}}}}{{\sqrt[3]{{\sin 2x}} + \sqrt[3]{{\cos 2x}}}}} dx\\\ \Rightarrow 2I = \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{\sqrt[3]{{\cos 2x}}}}{{\sqrt[3]{{\sin 2x}} + \sqrt[3]{{\cos 2x}}}}} dx + \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{\sqrt[3]{{\sin 2x}}}}{{\sqrt[3]{{\sin 2x}} + \sqrt[3]{{\cos 2x}}}}} dx\end{array}
Simplifying the expression, we get
2I=π/245π/24sin2x3+cos2x3cos2x3+sin2x3dx 2I=π/245π/24(1)dx\begin{array}{l} \Rightarrow 2I = \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{\sqrt[3]{{\sin 2x}} + \sqrt[3]{{\cos 2x}}}}{{\sqrt[3]{{\cos 2x}} + \sqrt[3]{{\sin 2x}}}}} dx\\\ \Rightarrow 2I = \int\limits_{\pi /24}^{5\pi /24} {\left( 1 \right)} dx\end{array}
Also, we know that the integral of a constant (1)dx\int {\left( 1 \right)} dx is xx.
Thus, we get
2I=xπ/245π/24\Rightarrow 2I = \left. x \right|_{\pi /24}^{5\pi /24}
Substituting the limits and simplifying the expression, we get
2I=5π24π24 2I=4π24 2I=π6\begin{array}{l} \Rightarrow 2I = \dfrac{{5\pi }}{{24}} - \dfrac{\pi }{{24}}\\\ \Rightarrow 2I = \dfrac{{4\pi }}{{24}}\\\ \Rightarrow 2I = \dfrac{\pi }{6}\end{array}
Dividing both sides by 2, we get
2I2=π2×6 I=π12 π/245π/24dx1+tan2x3=π12\begin{array}{l} \Rightarrow \dfrac{{2I}}{2} = \dfrac{\pi }{{2 \times 6}}\\\ \Rightarrow I = \dfrac{\pi }{{12}}\\\ \Rightarrow \int\limits_{\pi /24}^{5\pi /24} {\dfrac{{dx}}{{1 + \sqrt[3]{{\tan 2x}}}}} = \dfrac{\pi }{{12}}\end{array}
Therefore, the value of the definite integral π/245π/24dx1+tan2x3\int\limits_{\pi /24}^{5\pi /24} {\dfrac{{dx}}{{1 + \sqrt[3]{{\tan 2x}}}}} is π12\dfrac{\pi }{{12}}.

Hence, option (c) is correct.

Note:
We have used the sum of two integrals to add the integrals π/245π/24cos2x3sin2x3+cos2x3dx\int\limits_{\pi /24}^{5\pi /24} {\dfrac{{\sqrt[3]{{\cos 2x}}}}{{\sqrt[3]{{\sin 2x}} + \sqrt[3]{{\cos 2x}}}}} dx and π/245π/24sin2x3sin2x3+cos2x3dx\int\limits_{\pi /24}^{5\pi /24} {\dfrac{{\sqrt[3]{{\sin 2x}}}}{{\sqrt[3]{{\sin 2x}} + \sqrt[3]{{\cos 2x}}}}} dx. The sum of two integrals f(x)f\left( x \right) and g(x)g\left( x \right) can be written as f(x)dx+g(x)dx=[f(x)+g(x)]dx\int {f\left( x \right)} dx + \int {g\left( x \right)} dx = \int {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx.