Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

The integral π43π4dx1+cosx\int\limits^{\frac{3\, \pi}{4}}_{\frac{\pi}{4}} \frac{dx}{ 1 + \cos \, x} is equal to :

A

2

B

4

C

-1

D

-2

Answer

2

Explanation

Solution

π43π4dx2cos2x2dx=12π43π4sec2x2dx\int\limits^{\frac{3\, \pi}{4}}_{\frac{\pi}{4}} \frac{dx}{2 \cos^{2} \frac{x}{2}}dx = \frac{1}{2}\int\limits^{\frac{3\, \pi}{4}}_{\frac{\pi}{4}}\sec^{2} \frac{x}{2}dx
=12[tanx212]π43π4= \frac{1}{2}\left[\frac{\tan \frac{x}{2}}{\frac{1}{2}}\right]^{{\frac{3\pi}{4}}}_{{\frac{\pi}{4}}}
=tan3π8tanπ8= \tan \frac{3\pi}{8}-\tan \frac{\pi}{8}
[tanπ8=1cosπ41+cosπ4=212+1=211tan3π8=1cos3π41+cos3π4=2+121=2+1]\left[\tan \frac{\pi}{8} = \sqrt{\frac{1-\cos \frac{\pi}{4}}{1+\cos \frac{\pi}{4}}} = \sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}} = \frac{\sqrt{2}-1}{1} \tan \frac{3\pi}{8} = \sqrt{\frac{1-\cos \frac{3\pi}{4}}{1+\cos \frac{3\pi}{4}}}= \sqrt{\frac{\sqrt{2}+1}{\sqrt{2}-1}} = \sqrt{2} + 1\right]
=(2+1)(21)= \left(\sqrt{2}+1\right)-\left(\sqrt{2}-1\right)
=2= 2