Question
Question: The integral \[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{dx}}{{\sin 2x\left( {{{\tan ...
The integral 4π∫6πsin2x(tan5x+cot5x)dx equals :
A.101(4π−tan−1(931))
B.101(4π−tan−1(331))
C.10π
D.201tan−1(931)
Solution
Firstly we simplify the denominator by using the formula of sin2x=1+tan2x2tanx, then we simplify the fraction further, and then we substitute the value of tan5x as z and we change the limits and then solve the integral to get the required answer.
Complete step-by-step answer:
4π∫6πsin2x(tan5x+cot5x)dx.
We have to apply the trigonometric formula,sin2x=1+tan2x2tanx.
Using this formula, we get
4π∫6π1+tan2x2tanx(tan5x+cot5x)dx
Now we apply the formula (sec2x=1+tan2x), we get,
=4π∫6π2tanx(tan5x+cot5x)sec2xdx
Since we know that cotx=tanx1; therefore, cot5x=(tanx1)5=tan5x1
=4π∫6π2tanx(tan5x+tan5x1)sec2xdx
Multiplying the numerator and denominator by tan5x, we get,
=4π∫6π2tanx(tan10x+1)tan5x⋅sec2xdx
On further simplifying we get,
=4π∫6π2(tan10x+1)tan4x⋅sec2xdx
Now, we put tan5x=z............(1)
Differentiating both side of this we obtain,
The limit of the integration will change,
∴From Eq. (1) we can get,
For x=6π, the value of z will be, z=3−25∵tan6π=31 ∴tan56π=32115=3−25
Again, for x=4π, the value of z will be, z=1[∵tan4π=1 ∴tan54π=1 ]
Now, we write the integration in terms of z, which is
\dfrac{1}{{10}}\left[ {\dfrac{1}{1}{{\tan }^{ - 1}}\dfrac{z}{1}} \right]_1^{{3^{ - \dfrac{5}{2}}}}\left[ {\because Here{\text{ }}m = 1{\text{ }}and{\text{ }}a = 1,{\text{ }}b = {3^{ - \dfrac{5}{2}}}} \right] \\
= \dfrac{1}{{10}}\left[ {{{\tan }^{ - 1}}{3^{ - \dfrac{5}{2}}} - {{\tan }^{ - 1}}1} \right] \\
= \dfrac{1}{{10}}\left( {{{\tan }^{ - 1}}\dfrac{1}{{3\sqrt 3 }} - \dfrac{\pi }{4}} \right) \\