Solveeit Logo

Question

Question: The integral \(\int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{\left\\{ {{\sin }^{-1}}\left( 3x-4{{x}^{3}...

The integral \int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{\left\\{ {{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right) \right\\}dx} is equal to
A. 0
B. π2\dfrac{\pi }{2}
C. 3π2\dfrac{3\pi }{2}
D. π2-\dfrac{\pi }{2}

Explanation

Solution

We first use the concept of inverse trigonometric functions and formulas like cos1(x)=πcos1x{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}x and sin1y+cos1y=π2{{\sin }^{-1}}y+{{\cos }^{-1}}y=\dfrac{\pi }{2}. We use these formulas to simplify the given equation (sin1(3x4x3)cos1(4x33x))\left( {{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right) \right). Then we use the definite integral formulas of aaf(x)dx=20af(x)dx\int\limits_{-a}^{a}{f\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)dx} for even function. We find the solution.

Complete step by step solution:
We have been given an equation for integral. We first simplify the equation.
We have sin1(3x4x3)cos1(4x33x){{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right).
We know that cos1(x)=πcos1x{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}x.
We have that cos1(4x33x)=πcos1(3x4x3){{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right)=\pi -{{\cos }^{-1}}\left( 3x-4{{x}^{3}} \right).
Replacing we get sin1(3x4x3)cos1(4x33x)=sin1(3x4x3)π+cos1(3x4x3){{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right)={{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-\pi +{{\cos }^{-1}}\left( 3x-4{{x}^{3}} \right).
We also have the identity that sin1y+cos1y=π2{{\sin }^{-1}}y+{{\cos }^{-1}}y=\dfrac{\pi }{2}.
Therefore, sin1(3x4x3)π+cos1(3x4x3)=π2π=π2{{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-\pi +{{\cos }^{-1}}\left( 3x-4{{x}^{3}} \right)=\dfrac{\pi }{2}-\pi =-\dfrac{\pi }{2}.
Now we complete the integral
\begin{aligned} & \int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{\left\\{ {{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right) \right\\}dx} \\\ & =\int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{\left\\{ -\dfrac{\pi }{2} \right\\}dx} \\\ \end{aligned}
Now we use the concept of definite integral where aaf(x)dx=20af(x)dx\int\limits_{-a}^{a}{f\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)dx} if the function is even function and aaf(x)dx=0\int\limits_{-a}^{a}{f\left( x \right)dx}=0 if the function is odd function.
For our integral the function is even. So, π21212dx=π012dx=π[x]012=π2-\dfrac{\pi }{2}\int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{dx}=-\pi \int\limits_{0}^{\dfrac{1}{2}}{dx}=-\pi \left[ x \right]_{0}^{\dfrac{1}{2}}=\dfrac{-\pi }{2}.
The integral \int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{\left\\{ {{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right) \right\\}dx} is π2\dfrac{-\pi }{2}.
The correct option is D.

Note: We need to remember that we can also change the variable of the function where we take x=sinαx=\sin \alpha and x=cosβx=\cos \beta for different equations. We simplify the equation and find differential forms to find the solution.