Question
Question: The integral \(\int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{\left\\{ {{\sin }^{-1}}\left( 3x-4{{x}^{3}...
The integral \int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{\left\\{ {{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right) \right\\}dx} is equal to
A. 0
B. 2π
C. 23π
D. −2π
Solution
We first use the concept of inverse trigonometric functions and formulas like cos−1(−x)=π−cos−1x and sin−1y+cos−1y=2π. We use these formulas to simplify the given equation (sin−1(3x−4x3)−cos−1(4x3−3x)). Then we use the definite integral formulas of −a∫af(x)dx=20∫af(x)dx for even function. We find the solution.
Complete step by step solution:
We have been given an equation for integral. We first simplify the equation.
We have sin−1(3x−4x3)−cos−1(4x3−3x).
We know that cos−1(−x)=π−cos−1x.
We have that cos−1(4x3−3x)=π−cos−1(3x−4x3).
Replacing we get sin−1(3x−4x3)−cos−1(4x3−3x)=sin−1(3x−4x3)−π+cos−1(3x−4x3).
We also have the identity that sin−1y+cos−1y=2π.
Therefore, sin−1(3x−4x3)−π+cos−1(3x−4x3)=2π−π=−2π.
Now we complete the integral
\begin{aligned}
& \int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{\left\\{ {{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right) \right\\}dx} \\\
& =\int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{\left\\{ -\dfrac{\pi }{2} \right\\}dx} \\\
\end{aligned}
Now we use the concept of definite integral where −a∫af(x)dx=20∫af(x)dx if the function is even function and −a∫af(x)dx=0 if the function is odd function.
For our integral the function is even. So, −2π−21∫21dx=−π0∫21dx=−π[x]021=2−π.
The integral \int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{\left\\{ {{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right) \right\\}dx} is 2−π.
The correct option is D.
Note: We need to remember that we can also change the variable of the function where we take x=sinα and x=cosβ for different equations. We simplify the equation and find differential forms to find the solution.