Solveeit Logo

Question

Question: The integral \(\int\limits_{ - \dfrac{1}{2}}^{\dfrac{1}{2}} {{{\sin }^{ - 1}}\left( {3x - 4{x^3}} \r...

The integral 1212sin1(3x4x3)cos1(4x33x)dx\int\limits_{ - \dfrac{1}{2}}^{\dfrac{1}{2}} {{{\sin }^{ - 1}}\left( {3x - 4{x^3}} \right) - {{\cos }^{ - 1}}\left( {4{x^3} - 3x} \right)dx} is equal to :
1. 0
2. π2\dfrac{\pi }{2}
3. 3π2\dfrac{{3\pi }}{2}
4. π2 - \dfrac{\pi }{2}

Explanation

Solution

We have to evaluate the value of 1212sin1(3x4x3)cos1(4x33x)dx\int\limits_{ - \dfrac{1}{2}}^{\dfrac{1}{2}} {{{\sin }^{ - 1}}\left( {3x - 4{x^3}} \right) - {{\cos }^{ - 1}}\left( {4{x^3} - 3x} \right)dx} . We will write a simplified expression for the given terms using the properties of trigonometry. Then, we will do integration of the expression by applying the formulas of integration. After integration, we will put the limits and then solve it to get the required answer.

Complete step by step solution:
It is given that we have to evaluate the following integral, 1212sin1(3x4x3)cos1(4x33x)dx\int\limits_{ - \dfrac{1}{2}}^{\dfrac{1}{2}} {{{\sin }^{ - 1}}\left( {3x - 4{x^3}} \right) - {{\cos }^{ - 1}}\left( {4{x^3} - 3x} \right)dx} We will simplify the terms separately.
Put x=sinyx = \sin y in the term, sin1(3x4x3){\sin ^{ - 1}}\left( {3x - 4{x^3}} \right), then y=sin1xy = {\sin ^{ - 1}}x
sin1(3siny4sin3y) sin1(sin3y) 3y  \Rightarrow {\sin ^{ - 1}}\left( {3\sin y - 4{{\sin }^3}y} \right) \\\ \Rightarrow {\sin ^{ - 1}}\left( {\sin 3y} \right) \\\ \Rightarrow 3y \\\
On substituting the value of yy, we will get,
=3sin1x= 3{\sin ^{ - 1}}x
Similarly, let x=coszx = \cos z in the term cos1(4x33x){\cos ^{ - 1}}\left( {4{x^3} - 3x} \right), then z=cos1xz = {\cos ^{ - 1}}x
cos1(4cos3z3cosz) cos1(cos3z) 3z  \Rightarrow {\cos ^{ - 1}}\left( {4{{\cos }^3}z - 3\cos z} \right) \\\ \Rightarrow {\cos ^{ - 1}}\left( {\cos 3z} \right) \\\ \Rightarrow 3z \\\
On substituting the value of zz, we will get,
=3cos1x= 3{\cos ^{ - 1}}x
Now, the given expression can be written as,
1212(3sin1x3cos1x)dx 31212(sin1xcos1x)dx  \Rightarrow \int\limits_{ - \dfrac{1}{2}}^{\dfrac{1}{2}} {\left( {3{{\sin }^{ - 1}}x - 3{{\cos }^{ - 1}}x} \right)dx} \\\ \Rightarrow 3\int\limits_{ - \dfrac{1}{2}}^{\dfrac{1}{2}} {\left( {{{\sin }^{ - 1}}x - {{\cos }^{ - 1}}x} \right)dx} \\\
We know that sin1xdx=xsin1x+1x2\int {{{\sin }^{ - 1}}xdx = x{{\sin }^{ - 1}}x + \sqrt {1 - {x^2}} } and cos1xdx=xcos1x1x2\int {{{\cos }^{ - 1}}xdx = x{{\cos }^{ - 1}}x - \sqrt {1 - {x^2}} }
When we integrate the above expression, we will get,
=3[xsin1x+1x2xcos1x+1x2]1212 =3[xsin1xxcos1x+21x2]1212  = 3\left[ {x{{\sin }^{ - 1}}x + \sqrt {1 - {x^2}} - x{{\cos }^{ - 1}}x + \sqrt {1 - {x^2}} } \right]_{ - \dfrac{1}{2}}^{\dfrac{1}{2}} \\\ = 3\left[ {x{{\sin }^{ - 1}}x - x{{\cos }^{ - 1}}x + 2\sqrt {1 - {x^2}} } \right]_{ - \dfrac{1}{2}}^{\dfrac{1}{2}} \\\
When we will substitute the limits, we will get,
=3[12sin1(12)12cos1(12)+21(14)]3[(12)sin1(12)(12)cos1(12)+2114] =3[12(π6)12(π3)+3]3[12(π6)+12(ππ3)+3] =3[π12π6+3]3[π12+π3+3] =3[π12π6+3π12π33] =3[π6π3] =3π2  = 3\left[ {\dfrac{1}{2}{{\sin }^{ - 1}}\left( {\dfrac{1}{2}} \right) - \dfrac{1}{2}{{\cos }^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2\sqrt {1 - \left( {\dfrac{1}{4}} \right)} } \right] - 3\left[ {\left( { - \dfrac{1}{2}} \right){{\sin }^{ - 1}}\left( { - \dfrac{1}{2}} \right) - \left( { - \dfrac{1}{2}} \right){{\cos }^{ - 1}}\left( { - \dfrac{1}{2}} \right) + 2\sqrt {1 - \dfrac{1}{4}} } \right] \\\ = 3\left[ {\dfrac{1}{2}\left( {\dfrac{\pi }{6}} \right) - \dfrac{1}{2}\left( {\dfrac{\pi }{3}} \right) + \sqrt 3 } \right] - 3\left[ { - \dfrac{1}{2}\left( { - \dfrac{\pi }{6}} \right) + \dfrac{1}{2}\left( {\pi - \dfrac{\pi }{3}} \right) + \sqrt 3 } \right] \\\ = 3\left[ {\dfrac{\pi }{{12}} - \dfrac{\pi }{6} + \sqrt 3 } \right] - 3\left[ {\dfrac{\pi }{{12}} + \dfrac{\pi }{3} + \sqrt 3 } \right] \\\ = 3\left[ {\dfrac{\pi }{{12}} - \dfrac{\pi }{6} + \sqrt 3 - \dfrac{\pi }{{12}} - \dfrac{\pi }{3} - \sqrt 3 } \right] \\\ = 3\left[ { - \dfrac{\pi }{6} - \dfrac{\pi }{3}} \right] \\\ = - \dfrac{{3\pi }}{2} \\\

Hence, option C is correct.

Note:
We have substituted x=sinyx = \sin yin first term as we get an expression 3siny4sin3y3\sin y - 4{\sin ^3}y which is equal to sin3y\sin 3y and x=coszx = \cos z in second term as 4cos3z3cosz4{\cos ^3}z - 3\cos z is equal to cos3z\cos 3z. While substituting the limits, we will first put the upper limit for the first term and then the lower limit.