Question
Question: The integral \[\int\limits_1^e {\left\\{ {{{\left( {\dfrac{x}{e}} \right)}^{2x}} - {{\left( {\dfrac{...
The integral \int\limits_1^e {\left\\{ {{{\left( {\dfrac{x}{e}} \right)}^{2x}} - {{\left( {\dfrac{e}{x}} \right)}^x}} \right\\}{{\log }_e}xdx} is equal to:
A. 21−e−e21
B. 23−e1−2e21
C. −21+e1−2e21
D. 23−e−2e21
Solution
Hint : In order to solve the question given above, you need to have a basic understanding of the concepts of integration. Since, it is visible that no direct formula can be applied to solve this question, we have to equate the value of (ex)x in the equation. This will help in simplifying the integration of the above integral.
Complete step by step solution:
We are given \int\limits_1^e {\left\\{ {{{\left( {\dfrac{x}{e}} \right)}^{2x}} - {{\left( {\dfrac{e}{x}} \right)}^x}} \right\\}{{\log }_e}xdx}
To solve the above question,
We have to put
x\left( {{{\log }_e}x - {{\log }_e}e} \right) = \log t \\
\Rightarrow \left[ {x\left( {\dfrac{1}{x}} \right) + \left( {{{\log }_e}x - {{\log }_e}e} \right)} \right] dx = \dfrac{1}{t}dt \\
\left( {1 + {{\log }_e}x - 1} \right)dx = \dfrac{1}{t}dt \\
\Rightarrow \left( {{{\log }_e}x} \right)dx = \dfrac{1}{t}dt ;
x = e \\
\Rightarrow t = 1 \\
x = 1 \\
\Rightarrow t = \dfrac{1}{e} ;
\int\limits_{\dfrac{1}{e}}^1 {\left( {{t^2} - \dfrac{1}{t}} \right)} \times \dfrac{1}{t}dt \\
\Rightarrow \int\limits_{\dfrac{1}{e}}^1 {\left( {t - \dfrac{1}{{{t^2}}}} \right)} dt ;