Solveeit Logo

Question

Mathematics Question on Integration by Parts

The integral 1/21/2([x]+log(1+x1x))dx\int\limits^{1/2}_{-1/2} \bigg ([x] + \log \bigg ( \frac{1+ x}{1 - x} \bigg ) \bigg ) \, dx equals

A

12-\frac{1}{2}

B

0

C

1

D

log(12)log \bigg ( \frac{1}{2} \bigg )

Answer

12-\frac{1}{2}

Explanation

Solution

1/21/2([x]+log(1+x1x))dx\int ^{1/2}_{-1/2} \bigg ([x] + log \bigg ( \frac{1+ x}{1 - x} \bigg ) \bigg ) \, dx \,
=1/21/2[x]dx+1/21/2log(1+x1x)dx= \int^{1/2}_{-1/2} [x] \, dx + \int^{1/2}_{-1/2} \, log \bigg (\frac{1+ x }{1 - x } \bigg ) dx
=1/21/2[x]dx+0[(1+x1x)= \int^{1/2}_{-1/2} [x] \, dx + 0 \, \, \, \, \, \, \, \, \, \, \, \, \, \, \bigg [\because \bigg ( \frac{ 1 + x }{ 1 - x} \bigg ) is an odd function ]\bigg ]
=1/20[x]dx+01/2[x]dx=1/20(1)dx+01/2dx= \int^{0}_{-1/2} [x] \, dx + \int^{1/2}_{0} [x] \, dx = \int^{0}_{-1/2} ( - 1) \, dx + \int^{1/2}_{0} \, dx
=[x]1/20=(0+12)=12=[ x]^0_{-1/2} = - \bigg ( 0 + \frac{1}{2} \bigg ) =- \frac{1}{2}