Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The integral xdx2x2+2x2\int \frac{xdx}{2-x^{2}+\sqrt{2-x^{2}}} equals

A

log1+2+x2+clog\left|1+\sqrt{2+x^{2}}\right|+c

B

log1+2x2+c-log\left|1+\sqrt{2-x^{2}}\right|+c

C

xlog12x2+c-x\,log\left|1-\sqrt{2-x^{2}}\right|+c

D

xlog12+x2+cx\,log\left|1-\sqrt{2+x^{2}}\right|+c

Answer

log1+2x2+c-log\left|1+\sqrt{2-x^{2}}\right|+c

Explanation

Solution

I=xdx2x2+2x2I=\int\frac{ x\,dx}{2-x^{2}+\sqrt{2-x^{2}}}
Put t=2x2,dtdx=122x2.(2x)t=\sqrt{2-x^{2} }, \frac{dt}{dx}=\frac{1}{2\sqrt{2-x^{2}}}.\left(-2x\right)
tdt=xdx\Rightarrow -t\,dt=x\,dx
I=(t)dtt2+t=1t+1dt=logt+1\therefore I=\int \frac{\left(-t\right)dt}{t^{2}+t}=-\int \frac{1}{t+1}dt=-log\left|t+1\right|
=log2x2+1+c=-log\left|\sqrt{2-x^{2}}+1\right|+c