Question
Mathematics Question on Integration by Partial Fractions
The integral ∫(x12+3x6+1)tan−1(x3x3+1)x8−x2dx is equal to:
A
loge[tan−1(x3x3+1)]1/3+C
B
loge[tan−1(x3x3+1)]1/2+C
C
loge[tan−1(x3x3+1)]+C
D
loge[tan−1(x3x3+1)]3+C
Answer
loge[tan−1(x3x3+1)]1/3+C
Explanation
Solution
Given:
I=∫(x12+3x6+1)tan−1(x3+x31)x8−x2dx.
Let:
t=tan−1(x3+x31).
Then:
dt=1+(x3+x31)21⋅(3x2−x43)dx.
Simplifying:
dt=1+(x3+x31)21⋅x43x6−3dx.
dt=x12+3x6+1x6−1dx.
Rewriting the integral:
I=31∫tdt=31ln∣t∣+C.
Substituting back:
I=31lntan−1(x3+x31)+C.
Simplifying further:
I=ln(tan−1(x3+x31))1/3+C.
The correct option is (A) : loge[tan−1(x3x3+1)]1/3+C