Question
Mathematics Question on General and Particular Solutions of a Differential Equation
The integral ∫x4+x2x3−1dx is equal to : (Here C is a constant of integration)
A
logexx3+1+C
B
21loge∣x3∣(x3+1)2+C
C
21logex3∣x3+1∣2+C
D
logex3∣x3+1∣2+C
Answer
logexx3+1+C
Explanation
Solution
∫x4+x2x3−1dx ⇒∫x4+x(4x3+1)−(2x3+2)dx ⇒∫x4+x4x3+1dx−2∫x1dx x4+x=t⇒(4x3+1)dx=dt ⇒∫tdt−2∫x1dx ⇒ℓn∣t∣−2ℓnx+C ⇒ℓnx2x4+x+C⇒ℓnxx3+1+C