Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The integral 2x31x4+xdx\int \frac{2x^{3} -1}{x^{4} +x} dx is equal to : (Here C is a constant of integration)

A

logex3+1x+C\log_{e} \left|\frac{x^{3} + 1}{x}\right|+C

B

12loge(x3+1)2x3+C\frac{1}{2} \log_{e} \frac{\left(x^{3} +1\right)^{2}}{\left|x^{3}\right|} +C

C

12logex3+12x3+C\frac{1}{2} \log_{e} \frac{\left|x^{3} +1\right|^{2}}{x^{3}} +C

D

logex3+12x3+C\log_{e} \frac{\left|x^{3} +1\right|^{2}}{x^{3}} +C

Answer

logex3+1x+C\log_{e} \left|\frac{x^{3} + 1}{x}\right|+C

Explanation

Solution

2x31x4+xdx\int \frac{2 x^{3}-1}{x^{4}+x} d x (4x3+1)(2x3+2)x4+xdx\Rightarrow \int \frac{\left(4 x^{3}+1\right)-\left(2 x^{3}+2\right)}{x^{4}+x} d x 4x3+1x4+xdx21xdx\Rightarrow \int \frac{4 x^{3}+1}{x^{4}+x} d x-2 \int \frac{1}{x} d x x4+x=t(4x3+1)dx=dtx^{4}+x=t \Rightarrow\left(4 x^{3}+1\right) d x=d t dtt21xdx\Rightarrow \int \frac{d t}{t}-2 \int \frac{1}{x} d x nt2nx+C\Rightarrow \ell n|t|-2 \ell n x+C nx4+xx2+Cnx3+1x+C\Rightarrow \ell n \left|\frac{x^{4}+x}{x^{2}}\right|+C \Rightarrow \ell n\left|\frac{x^{3}+1}{x}\right|+C