Question
Mathematics Question on Definite Integral
The Integral
∫1+32sin2x(1−31)(cosx−sinx)dx
is equal to
A
21logetan(2π+6π)tan(2π+12π)+C
B
21logetan(2π+3π)tan(2π+6π)+C
C
logetan(2π+12π)tan(2π+6π)+C
D
21logetan(2π−6π)tan(2π−12π)+C
Answer
21logetan(2π+6π)tan(2π+12π)+C
Explanation
Solution
The correct answer is (A) : 21logetan(2π+6π)tan(2π+12π)+C
=∫1+32sin2x(1−31)(cosx−sinx)dx
=∫(32)(sin3π+sin2x)(33−1)2sin(4π−x)dx
=∫sin(3π+sin2x)2(3−1)sin(4π−x)dx
=∫sin(6π+x)cos(6π−x)223−1sin(4π−x)dx
=21∫sin(6π+x)cos(6π−x)2sin12πsin(4π−x)dx
=21∫sin(6π+x)cos(6π−x)cos(6π−x)−cos(3π−x)dx
=21[∫cosec(6π+x)dx−∫sec(6π−x)dx]
=21[In∣tan(12π+2x)∣−∫cosec(3π−x)dx]
=21[In∣tan(12π+2π)∣−In∣6π+2π∣]+C
=21In∣tan(6π+2π)tan(12π+2π)∣+C