Solveeit Logo

Question

Mathematics Question on Definite Integral

The Integral
(113)(cosxsinx)1+23sin2xdx\int \frac{(1 - \frac{1}{\sqrt{3}})(\cos x - \sin x)}{1 + \frac{2}{\sqrt{3}}\sin2 x} \,dx
is equal to

A

12logetan(π2+π12)tan(π2+π6)+C\frac{1}{2} \log_e \left| \frac{\tan\left(\frac{\pi}{2} + \frac{\pi}{12}\right)}{\tan\left(\frac{\pi}{2} + \frac{\pi}{6}\right)} \right| + C

B

12logetan(π2+π6)tan(π2+π3)+C\frac{1}{2} \log_e \left| \frac{\tan\left(\frac{\pi}{2} + \frac{\pi}{6}\right)}{\tan\left(\frac{\pi}{2} + \frac{\pi}{3}\right)} \right| + C

C

logetan(π2+π6)tan(π2+π12)+C\log_e \left| \frac{\tan\left(\frac{\pi}{2} + \frac{\pi}{6}\right)}{\tan\left(\frac{\pi}{2} + \frac{\pi}{12}\right)} \right| + C

D

12logetan(π2π12)tan(π2π6)+C\frac{1}{2} \log_e \left| \frac{\tan\left(\frac{\pi}{2} - \frac{\pi}{12}\right)}{\tan\left(\frac{\pi}{2} - \frac{\pi}{6}\right)} \right| + C

Answer

12logetan(π2+π12)tan(π2+π6)+C\frac{1}{2} \log_e \left| \frac{\tan\left(\frac{\pi}{2} + \frac{\pi}{12}\right)}{\tan\left(\frac{\pi}{2} + \frac{\pi}{6}\right)} \right| + C

Explanation

Solution

The correct answer is (A) : 12logetan(π2+π12)tan(π2+π6)+C\frac{1}{2} \log_e \left| \frac{\tan\left(\frac{\pi}{2} + \frac{\pi}{12}\right)}{\tan\left(\frac{\pi}{2} + \frac{\pi}{6}\right)} \right| + C
=(113)(cosxsinx)1+23sin2xdx=\int \frac{(1 - \frac{1}{\sqrt{3}})(\cos x - \sin x)}{1 + \frac{2}{\sqrt{3}}\sin2 x} \,dx
=(313)2sin(π4x)(23)(sinπ3+sin2x)dx= ∫\frac{(\frac{\sqrt{3}-1}{\sqrt{3}}) \sqrt2\sin(\frac{π}{4}-x)}{(\frac{2}{\sqrt3})(\sin \frac{π}{3}+\sin 2x)}dx
=(31)2sin(π4x)sin(π3+sin2x)dx= ∫ \frac{\frac{(\sqrt{3}-1)}{\sqrt2}\sin(\frac{π}{4}-x)}{\sin(\frac{π}{3}+\sin2x)}dx
=3122sin(π4x)sin(π6+x)cos(π6x)dx=\int \frac{\frac{\sqrt{3}-1}{2\sqrt{2}}\sin(\frac{\pi}{4}-x)}{\sin(\frac{\pi}{6}+x)\cos(\frac{\pi}{6}-x)} \,dx
=122sinπ12sin(π4x)sin(π6+x)cos(π6x)dx= \frac{1}{2} ∫ \frac{2\sin\frac{π}{12}sin(\frac{π}{4}-x) }{\sin(\frac{π}{6}+x)\cos(\frac{π}{6}-x)}dx
=12cos(π6x)cos(π3x)sin(π6+x)cos(π6x)dx= \frac{1}{2} ∫ \frac{\cos(\frac{π}{6}-x)-\cos(\frac{π}{3}-x)}{\sin(\frac{π}{6}+x)\cos(\frac{π}{6}-x)}dx
=12[cosec(π6+x)dxsec(π6x)dx]=\frac{1}{2} [ ∫\cosec (\frac{π}{6}+x)dx - ∫sec (\frac{π}{6}-x)dx]
=12[Intan(π12+x2)cosec(π3x)dx]=\frac{1}{2}[In |\tan(\frac{π}{12}+\frac{x}{2})|- ∫\cosec (\frac{π}{3}-x)dx]
=12[Intan(π12+π2)Inπ6+π2]+C=\frac{1}{2} [ In|\tan(\frac{π}{12}+ \frac{π}{2})| -In| \frac{π}{6}+\frac{π}{2}|] +C
=12Intan(π12+π2)tan(π6+π2)+C=\frac{1}{2} In|\frac{\tan(\frac{π}{12}+ \frac{π}{2})}{\tan(\frac{π}{6}+ \frac{π}{2})}| +C