Solveeit Logo

Question

Mathematics Question on Methods of Integration

The integral 012ln(1+2x)1+4x2dx,\int^{^{\frac{1}{2}}}_{_0} \frac{ln \left(1+2x\right)}{1+4x^{2}}dx, equals :

A

π4\frac{\pi}{4} ln 2

B

π8\frac{\pi}{8} ln 2

C

π16\frac{\pi}{16} ln 2

D

π32\frac{\pi}{32} ln 2

Answer

π16\frac{\pi}{16} ln 2

Explanation

Solution

01/2\int\limits^{1/2}_{{0}} n(1+2x)1+(2x)2dx\frac{\ell n\left(1+2x\right)}{1+\left(2x\right)^{2}}dx \, Put 2x=tanθ2x=tan\,\theta dx=12sec2θdθdx=\frac{1}{2}sec^{2}\,\theta\,d\theta at x=0,θ=0,x=0, \theta=0, at x=12,θ=π4x=\frac{1}{2}, \theta=\frac{\pi}{4} I=0π/4I=\int\limits^{\pi/4}_{{0}} log(1+tanθ)1+tan2θ.12sec2θdθ\frac{\log\left(1+tan\,\theta\right)}{1+tan^{2}\,\theta }. \frac{1}{2}\,sec^{2}\,\theta \,d\theta I=120π/4log(1tanθ)dθ12I1I=\frac{1}{2} \int\limits^{\pi/4}_{{0}}\log(1\, tan\,\theta)\, d\theta\frac{1}{2}\,I_1 I=0π/4I=\int\limits^{\pi/4}_{{0}} log[1+tan(π4θ)]\log\left[1+tan\left(\frac{\pi}{4}-\theta\right)\right] using property =0π/4=\int\limits^{\pi/4}_{{0}} log[21+tanθ]=0π/4log2dθ0π/4log(1+tanθ)dθ\log\left[\frac{2}{1+tan\,\theta}\right]=\int\limits^{\pi/4}_{{0}}\log\, 2\,d\theta-\int\limits^{\pi/4}_{{0}}\,\log(1 +\tan\theta)\,d\theta I1=π4log2I1I_{1}=\frac{\pi}{4}\,\log\,2-I_{1} I1=π8ln2I_{1}=\frac{\pi}{8}\ln2 I=π16ln2\Rightarrow I=\frac{\pi}{16}\ln2