Solveeit Logo

Question

Question: The integral \(\int {\dfrac{{{{\sin }^2}x{{\cos }^2}x}}{{{{\left( {{{\sin }^5}x + {{\cos }^3}x{{\sin...

The integral sin2xcos2x(sin5x+cos3xsin2x+sin3xcos2x+cos5x)2dx\int {\dfrac{{{{\sin }^2}x{{\cos }^2}x}}{{{{\left( {{{\sin }^5}x + {{\cos }^3}x{{\sin }^2}x + {{\sin }^3}x{{\cos }^2}x + {{\cos }^5}x} \right)}^2}}}dx} is equal to
A) 11+cot3x+C\dfrac{1}{{1 + {{\cot }^3}x}} + C
B) 11+cot3x+C\dfrac{{ - 1}}{{1 + {{\cot }^3}x}} + C
C) 13(1+tan3x)+C\dfrac{1}{{3\left( {1 + {{\tan }^3}x} \right)}} + C
D) 13(1+tan3x)+C\dfrac{{ - 1}}{{3\left( {1 + {{\tan }^3}x} \right)}} + C

Explanation

Solution

At first, we need to simplify the integral. In order to do that, take sin2x{\sin ^2}x and cos2x{\cos ^2}x in such a way that we get sin3x+cos3x{\sin ^3}x + {\cos ^3}x in the denominator. Then, divide the numerator and denominator by cos6x{\cos ^6}x and find the integral.

Complete step-by-step solution:
Let us assume that
I=sin2xcos2x(sin5x+cos3xsin2x+sin3xcos2x+cos5x)2dxI = \int {\dfrac{{{{\sin }^2}x{{\cos }^2}x}}{{{{\left( {{{\sin }^5}x + {{\cos }^3}x{{\sin }^2}x + {{\sin }^3}x{{\cos }^2}x + {{\cos }^5}x} \right)}^2}}}dx}
Now, we have to simplify the denominator. But how will we do that? We will take sin2x{\sin ^2}x common from the first two terms and cos2x{\cos ^2}x common from the last two terms.
I=sin2xcos2x(sin5x+cos3xsin2x+sin3xcos2x+cos5x)2dx =sin2xcos2x(sin2x(sin3x+cos3x)+cos2x(sin3x+cos3x))2dx =sin2xcos2x((sin2x+cos2x)(sin3x+cos3x))2dx I = \int {\dfrac{{{{\sin }^2}x{{\cos }^2}x}}{{{{\left( {{{\sin }^5}x + {{\cos }^3}x{{\sin }^2}x + {{\sin }^3}x{{\cos }^2}x + {{\cos }^5}x} \right)}^2}}}dx} \\\ = \int {\dfrac{{{{\sin }^2}x{{\cos }^2}x}}{{{{\left( {{{\sin }^2}x\left( {{{\sin }^3}x + {{\cos }^3}x} \right) + {{\cos }^2}x\left( {{{\sin }^3}x + {{\cos }^3}x} \right)} \right)}^2}}}dx} \\\ = \int {\dfrac{{{{\sin }^2}x{{\cos }^2}x}}{{{{\left( {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\left( {{{\sin }^3}x + {{\cos }^3}x} \right)} \right)}^2}}}dx}
Using the property, sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
I=sin2xcos2x(sin3x+cos3x)2dxI = \int {\dfrac{{{{\sin }^2}x{{\cos }^2}x}}{{{{\left( {{{\sin }^3}x + {{\cos }^3}x} \right)}^2}}}dx} ..................(1)
Now we will divide both numerator and denominator by cos6x{\cos ^6}x, i.e., power of cosx\cos x in denominator. But do we need to do this?
This is because solving such an integral is quite difficult and dividing it by cos6x{\cos ^6}x will give us terms in tanx\tan x and secx\sec x.
Hence, dividing both numerator and denominator by cos6x{\cos ^6}x in equation (1)
I=sin2xcos2xcos6x(sin3x+cos3x)2cos6xdx =sin2xcos2x×cos2xcos4x(sin3x+cos3xcos3x)2dx =tan2xsec2x(tan3x+1)2dx I = \int {\dfrac{{\dfrac{{{{\sin }^2}x{{\cos }^2}x}}{{{{\cos }^6}x}}}}{{\dfrac{{{{\left( {{{\sin }^3}x + {{\cos }^3}x} \right)}^2}}}{{{{\cos }^6}x}}}}dx} \\\ = \int {\dfrac{{\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} \times \dfrac{{{{\cos }^2}x}}{{{{\cos }^4}x}}}}{{{{\left( {\dfrac{{{{\sin }^3}x + {{\cos }^3}x}}{{{{\cos }^3}x}}} \right)}^2}}}dx} \\\ = \int {\dfrac{{{{\tan }^2}x{{\sec }^2}x}}{{{{\left( {{{\tan }^3}x + 1} \right)}^2}}}dx}
Now, we can solve this by substitution.
Let t=tan3x+1t = {\tan ^3}x + 1.......................(2)
Then, dt=3tan2xsec2xdxdt = 3{\tan ^2}x{\sec ^2}xdx
dt3=tan2xsec2xdx\dfrac{{dt}}{3} = {\tan ^2}x{\sec ^2}xdx.......................(3)
Using (2) and (3) in II,
I=13t2dt Now, 1t2dt=1t+C I=13t+C I = \int {\dfrac{1}{{3{t^2}}}dt} \\\ {\text{Now, }}\int {\dfrac{1}{{{t^2}}}dt} = - \dfrac{1}{t} + C \\\ \Rightarrow I = - \dfrac{1}{{3t}} + C
Replacing tt by tan3x+1{\tan ^3}x + 1
I=13(tan3x+1)+CI = - \dfrac{1}{{3\left( {{{\tan }^3}x + 1} \right)}} + C

Hence, option D is correct.

Note: In the first step, we can also take sin3x{\sin ^3}x common from first and third term and cos3x{\cos ^3}x common from second and fourth term. Dividing by cos6x{\cos ^6}x, that is, the power of the cosx\cos x in the denominator is the key to solve this question. Choosing the correct substitution is also very important.