Solveeit Logo

Question

Question: The integral \(\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{{{\sec }^{\dfrac{2}{3}}}x{{\csc }^{\dfrac{4}...

The integral π6π3sec23xcsc43xdx\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{{{\sec }^{\dfrac{2}{3}}}x{{\csc }^{\dfrac{4}{3}}}xdx} is equal to
[a] 376336 [b]353313 [c]343313 [d]356323 \begin{aligned} & \left[ a \right]\ {{3}^{\dfrac{7}{6}}}-{{3}^{\dfrac{3}{6}}} \\\ & \left[ b \right]\,{{3}^{\dfrac{5}{3}}}-{{3}^{\dfrac{1}{3}}} \\\ & \left[ c \right]\,{{3}^{\dfrac{4}{3}}}-{{3}^{\dfrac{1}{3}}} \\\ & \left[ d \right]\,{{3}^{\dfrac{5}{6}}}-{{3}^{\dfrac{2}{3}}} \\\ \end{aligned}

Explanation

Solution

Multiply and divide by sec43x{{\sec }^{\dfrac{4}{3}}}x. Hence prove that the integrand is equal to sec2xtan43x\dfrac{{{\sec }^{2}}x}{{{\tan }^{\dfrac{4}{3}}}x}. Put tanx = t and use the fact that the derivative of tanx is sec2x{{\sec }^{2}}x and hence prove that the given integral is equal to 133dtt43\int_{\dfrac{1}{\sqrt{3}}}^{\sqrt{3}}{\dfrac{dt}{{{t}^{\dfrac{4}{3}}}}}. Use the fact that xndx=xn+1n+1,n1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1},n\ne -1. Hence find the value of the given integral.

Complete step-by-step answer:
Let I=π6π3sec23xcsc43xdxI=\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{{{\sec }^{\dfrac{2}{3}}}x{{\csc }^{\dfrac{4}{3}}}xdx}
Multiplying and dividing by sec43x{{\sec }^{\dfrac{4}{3}}}x, we get
I=π6π3sec23+43xcsc43xsec43xdxI=\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{{{\sec }^{\dfrac{2}{3}+\dfrac{4}{3}}}}x\dfrac{{{\csc }^{\dfrac{4}{3}}}x}{{{\sec }^{\dfrac{4}{3}}}x}dx
We know that ambm=(ab)m\dfrac{{{a}^{m}}}{{{b}^{m}}}={{\left( \dfrac{a}{b} \right)}^{m}}.
Using the above result, we have
I=π6π3sec2x(cscxsecx)43dxI=\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{{{\sec }^{2}}}x{{\left( \dfrac{\csc x}{\sec x} \right)}^{\dfrac{4}{3}}}dx
We know that ab=1ba\dfrac{a}{b}=\dfrac{1}{\dfrac{b}{a}}
Using the above result, we have
I=π6π3sec2x(1secxcscx)43dxI=\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}{{{\sec }^{2}}}x{{\left( \dfrac{1}{\dfrac{\sec x}{\csc x}} \right)}^{\dfrac{4}{3}}}dx
We know that tanx=sinxcosx=secxcscx\tan x=\dfrac{\sin x}{\cos x}=\dfrac{\sec x}{\csc x}
Using the above result, we get
I=π/6π/3sec2xtan43xdxI=\int_{\pi /6}^{\pi /3}{\dfrac{{{\sec }^{2}}x}{{{\tan }^{\dfrac{4}{3}}}x}dx}
Put tanx = t
Differentiating both sides, we get
sec2xdx=dt{{\sec }^{2}}xdx=dt
When x=π3,t=3x=\dfrac{\pi }{3},t=\sqrt{3}
When x=π6,t=13x=\dfrac{\pi }{6},t=\dfrac{1}{\sqrt{3}}
Hence, we have
I=1/33dtt43=1/33t43dtI=\int_{1/\sqrt{3}}^{\sqrt{3}}{\dfrac{dt}{{{t}^{\dfrac{4}{3}}}}=}\int_{1/\sqrt{3}}^{\sqrt{3}}{{{t}^{\dfrac{-4}{3}}}dt}
We know that xndx=xn+1n+1,n1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1},n\ne -1.
We know according to fundamental theorem of calculus that if f(x)dx=F(x)\int{f\left( x \right)dx}=F\left( x \right) then abf(x)dx=F(b)F(a)\int\limits_{a}^{b}{f\left( x \right)dx}=F\left( b \right)-F\left( a \right)
Hence, we have
I=(3t3)1/33=376356I=\left. \left( -\dfrac{3}{\sqrt[3]{t}} \right) \right|_{1/\sqrt{3}}^{\sqrt{3}}={{3}^{\dfrac{7}{6}}}-{{3}^{\dfrac{5}{6}}}

So, the correct answer is “Option A”.

Note: [1] A general trick for solving questions of the form secaxcsc2ax\int{{{\sec }^{a}}x{{\csc }^{2-a}}x} is by dividing and multiplying both sides by sec2ax{{\sec }^{2-a}}x and put tanx = t. The integral reduces to dtt2a\int{\dfrac{dt}{{{t}^{2-a}}}} which can be easily solved. This question is also of this form and hence this method is applied.
[2] It is generally useful to change the limits when changing the variable of integration as this avoids the process of reverting to the original variable and hence minimizes chances of making calculation mistakes.