Solveeit Logo

Question

Question: The integral \[\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{dx}}{{\sin 2x\left( {{{\tan }^5}x +...

The integral π4π6dxsin2x(tan5x+cot5x)\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{dx}}{{\sin 2x\left( {{{\tan }^5}x + {{\cot }^5}x} \right)}}} equals:
A) 110(π4tan1(193))\dfrac{1}{{10}}\left( {\dfrac{\pi }{4} - {{\tan }^{ - 1}}\left( {\dfrac{1}{{9\sqrt 3 }}} \right)} \right)
B) 15(π4tan1(133))\dfrac{1}{5}\left( {\dfrac{\pi }{4} - {{\tan }^{ - 1}}\left( {\dfrac{1}{{3\sqrt 3 }}} \right)} \right)
C) π10\dfrac{\pi }{{10}}
D) 120tan1(193)\dfrac{1}{{20}}{\tan ^{ - 1}}\left( {\dfrac{1}{{9\sqrt 3 }}} \right)

Explanation

Solution

Here, we have to find the integral for the given function. First, we will use the trigonometric identity, to simplify the integrand. Then we will use the substitution method to simplify the integrand and then we will integrate the function. Integration is the process of adding the small parts to find the whole parts.

Formula Used:
We will use the following formulae:

  1. Trigonometric Identity: sin2x=2tanx1+tan2x\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}
  2. Trigonometric Identity: cotx=1tanx\cot x = \dfrac{1}{{\tan x}}
  3. Trigonometric Identity: 1+tan2x=sec2x1 + {\tan ^2}x = {\sec ^2}x
  4. Differentiation formula: ddx(tanx)=sec2x\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x; ddt(t5)=5t4\dfrac{d}{{dt}}\left( {{t^5}} \right) = 5{t^4}
  5. Integration formula: 1p2+1dp=tan1p\int {\dfrac{1}{{{p^2} + 1}}dp = } {\tan ^{ - 1}}p

Complete step by step solution:
We have to find the integral π4π6dxsin2x(tan5x+cot5x)\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{dx}}{{\sin 2x\left( {{{\tan }^5}x + {{\cot }^5}x} \right)}}} .
First, we have to simplify the integrand using the trigonometric identities.
By using the trigonometric identities sin2x=2tanx1+tan2x\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}} and cotx=1tanx\cot x = \dfrac{1}{{\tan x}}, we get
π4π6dxsin2x(tan5x+cot5x)=π4π6dx2tanx1+tan2x(tan5x+1tan5x)\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{dx}}{{\sin 2x\left( {{{\tan }^5}x + {{\cot }^5}x} \right)}}} = \int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{dx}}{{\dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}\left( {{{\tan }^5}x + \dfrac{1}{{{{\tan }^5}x}}} \right)}}}
π4π6dxsin2x(tan5x+cot5x)=π4π61+tan2xdx2tanx(tan5x+1tan5x)\Rightarrow \int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{dx}}{{\sin 2x\left( {{{\tan }^5}x + {{\cot }^5}x} \right)}}} = \int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{1 + {{\tan }^2}xdx}}{{2\tan x\left( {{{\tan }^5}x + \dfrac{1}{{{{\tan }^5}x}}} \right)}}}
Now, by using the trigonometric identity, 1+tan2x=sec2x1 + {\tan ^2}x = {\sec ^2}x, we get
π4π6dxsin2x(tan5x+cot5x)=π4π6sec2xdx2tanx(tan5x+1tan5x)\Rightarrow \int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{dx}}{{\sin 2x\left( {{{\tan }^5}x + {{\cot }^5}x} \right)}}} = \int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{{{\sec }^2}xdx}}{{2\tan x\left( {{{\tan }^5}x + \dfrac{1}{{{{\tan }^5}x}}} \right)}}}
By the property of integration, we get
π4π6sec2xdx2tanx(tan5x+1tan5x)=π6π4sec2xdx2tanx(tan5x+1tan5x)\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{{{\sec }^2}xdx}}{{2\tan x\left( {{{\tan }^5}x + \dfrac{1}{{{{\tan }^5}x}}} \right)}}} = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{4}} {\dfrac{{{{\sec }^2}xdx}}{{2\tan x\left( {{{\tan }^5}x + \dfrac{1}{{{{\tan }^5}x}}} \right)}}}
Now, we will use the method of substitution.
Substituting t=tanxt = \tan x, we get the limits for tt as t=tan(π6)=13t = \tan \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{{\sqrt 3 }} and t=tan(π4)=1t = \tan \left( {\dfrac{\pi }{4}} \right) = 1
Differentiating tt with respect to xx, we get dt=sec2xdxdt = {\sec ^2}xdx. Then, by using the differentiation formula, we get
π6π4sec2xdx2tanx(tan5x+1tan5x)=131dt2t(t5+1t5)\Rightarrow \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{4}} {\dfrac{{{{\sec }^2}xdx}}{{2\tan x\left( {{{\tan }^5}x + \dfrac{1}{{{{\tan }^5}x}}} \right)}}} = \int_{\dfrac{1}{{\sqrt 3 }}}^1 {\dfrac{{dt}}{{2t\left( {{t^5} + \dfrac{1}{{{t^5}}}} \right)}}}
Simplifying the terms, we will get
π6π4sec2xdx2tanx(tan5x+1tan5x)=131dt2t(t10+1t5)\Rightarrow \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{4}} {\dfrac{{{{\sec }^2}xdx}}{{2\tan x\left( {{{\tan }^5}x + \dfrac{1}{{{{\tan }^5}x}}} \right)}}} = \int_{\dfrac{1}{{\sqrt 3 }}}^1 {\dfrac{{dt}}{{2t\left( {\dfrac{{{t^{10}} + 1}}{{{t^5}}}} \right)}}}
π6π4sec2xdx2tanx(tan5x+1tan5x)=131dt2(t10+1t4)\Rightarrow \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{4}} {\dfrac{{{{\sec }^2}xdx}}{{2\tan x\left( {{{\tan }^5}x + \dfrac{1}{{{{\tan }^5}x}}} \right)}}} = \int_{\dfrac{1}{{\sqrt 3 }}}^1 {\dfrac{{dt}}{{2\left( {\dfrac{{{t^{10}} + 1}}{{{t^4}}}} \right)}}}
π6π4sec2xdx2tanx(tan5x+1tan5x)=131t4dt2(t10+1)\Rightarrow \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{4}} {\dfrac{{{{\sec }^2}xdx}}{{2\tan x\left( {{{\tan }^5}x + \dfrac{1}{{{{\tan }^5}x}}} \right)}}} = \int_{\dfrac{1}{{\sqrt 3 }}}^1 {\dfrac{{{t^4}dt}}{{2\left( {{t^{10}} + 1} \right)}}}
Now, we will again use the method of substitution.
Substituting p=t5p = {t^5}, we get the limits for ppas p=15=1p = {1^5} = 1 and p=(13)5=1352=352p = {\left( {\dfrac{1}{{\sqrt 3 }}} \right)^5} = \dfrac{1}{{{3^{\dfrac{5}{2}}}}} = {3^{\dfrac{{ - 5}}{2}}} .
Differentiating tt with respect to xx by using the differentiation formula, we get
dp=5t4dt t4dt=dp5\begin{array}{l}dp = 5{t^4}dt\\\ \Rightarrow {t^4}dt = \dfrac{{dp}}{5}\end{array}
So, the equation becomes
131t4dt2(t10+1)=3521dp2(p2+1)5\Rightarrow \int_{\dfrac{1}{{\sqrt 3 }}}^1 {\dfrac{{{t^4}dt}}{{2\left( {{t^{10}} + 1} \right)}}} = \int_{{3^{\dfrac{{ - 5}}{2}}}}^1 {\dfrac{{dp}}{{2\left( {{p^2} + 1} \right) \cdot 5}}}
131t4dt2(t10+1)=1103521dp(p2+1)\Rightarrow \int_{\dfrac{1}{{\sqrt 3 }}}^1 {\dfrac{{{t^4}dt}}{{2\left( {{t^{10}} + 1} \right)}}} = \dfrac{1}{{10}}\int_{{3^{\dfrac{{ - 5}}{2}}}}^1 {\dfrac{{dp}}{{\left( {{p^2} + 1} \right)}}}
Now, by integrating using the integration formula 1p2+1dp=tan1p\int {\dfrac{1}{{{p^2} + 1}}dp = } {\tan ^{ - 1}}p, we get
131t4dt2(t10+1)=110(tan1p)3521\Rightarrow \int_{\dfrac{1}{{\sqrt 3 }}}^1 {\dfrac{{{t^4}dt}}{{2\left( {{t^{10}} + 1} \right)}}} = \dfrac{1}{{10}}\left( {{{\tan }^{ - 1}}p} \right)_{{3^{\dfrac{{ - 5}}{2}}}}^1
Now, by substituting the limits, we get
131t4dt2(t10+1)=110[tan1(1)(tan1352)]\Rightarrow \int_{\dfrac{1}{{\sqrt 3 }}}^1 {\dfrac{{{t^4}dt}}{{2\left( {{t^{10}} + 1} \right)}}} = \dfrac{1}{{10}}\left[ {{{\tan }^{ - 1}}\left( 1 \right) - \left( {{{\tan }^{ - 1}}{3^{\dfrac{{ - 5}}{2}}}} \right)} \right]
131t4dt2(t10+1)=110[tan1(1)(tan11323)]\Rightarrow \int_{\dfrac{1}{{\sqrt 3 }}}^1 {\dfrac{{{t^4}dt}}{{2\left( {{t^{10}} + 1} \right)}}} = \dfrac{1}{{10}}\left[ {{{\tan }^{ - 1}}\left( 1 \right) - \left( {{{\tan }^{ - 1}}\dfrac{1}{{{3^2}\sqrt 3 }}} \right)} \right]
131t4dt2(t10+1)=110[π4(tan1193)]\Rightarrow \int_{\dfrac{1}{{\sqrt 3 }}}^1 {\dfrac{{{t^4}dt}}{{2\left( {{t^{10}} + 1} \right)}}} = \dfrac{1}{{10}}\left[ {\dfrac{\pi }{4} - \left( {{{\tan }^{ - 1}}\dfrac{1}{{9\sqrt 3 }}} \right)} \right]
Therefore, The integral π4π6dxsin2x(tan5x+cot5x)\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{dx}}{{\sin 2x\left( {{{\tan }^5}x + {{\cot }^5}x} \right)}}} equals 110[π4(tan1193)]\dfrac{1}{{10}}\left[ {\dfrac{\pi }{4} - \left( {{{\tan }^{ - 1}}\dfrac{1}{{9\sqrt 3 }}} \right)} \right].

Thus Option (A) is correct.

Note:
We should always be conscious that whenever we are using the method of substitution in integration, we should always change the upper limit and lower limit accordingly to the substitution. So we should know that limits change according to the variable substituted. Here it is important to remember the different formulas of integration and differentiation.