Question
Question: The integral \[\int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{6}} {\dfrac{{dx}}{{\sin 2x\left( {{{\tan }^5}x +...
The integral ∫4π6πsin2x(tan5x+cot5x)dx equals:
A) 101(4π−tan−1(931))
B) 51(4π−tan−1(331))
C) 10π
D) 201tan−1(931)
Solution
Here, we have to find the integral for the given function. First, we will use the trigonometric identity, to simplify the integrand. Then we will use the substitution method to simplify the integrand and then we will integrate the function. Integration is the process of adding the small parts to find the whole parts.
Formula Used:
We will use the following formulae:
- Trigonometric Identity: sin2x=1+tan2x2tanx
- Trigonometric Identity: cotx=tanx1
- Trigonometric Identity: 1+tan2x=sec2x
- Differentiation formula: dxd(tanx)=sec2x; dtd(t5)=5t4
- Integration formula: ∫p2+11dp=tan−1p
Complete step by step solution:
We have to find the integral ∫4π6πsin2x(tan5x+cot5x)dx.
First, we have to simplify the integrand using the trigonometric identities.
By using the trigonometric identities sin2x=1+tan2x2tanx and cotx=tanx1, we get
∫4π6πsin2x(tan5x+cot5x)dx=∫4π6π1+tan2x2tanx(tan5x+tan5x1)dx
⇒∫4π6πsin2x(tan5x+cot5x)dx=∫4π6π2tanx(tan5x+tan5x1)1+tan2xdx
Now, by using the trigonometric identity, 1+tan2x=sec2x, we get
⇒∫4π6πsin2x(tan5x+cot5x)dx=∫4π6π2tanx(tan5x+tan5x1)sec2xdx
By the property of integration, we get
∫4π6π2tanx(tan5x+tan5x1)sec2xdx=∫6π4π2tanx(tan5x+tan5x1)sec2xdx
Now, we will use the method of substitution.
Substituting t=tanx, we get the limits for t as t=tan(6π)=31 and t=tan(4π)=1
Differentiating t with respect to x, we get dt=sec2xdx. Then, by using the differentiation formula, we get
⇒∫6π4π2tanx(tan5x+tan5x1)sec2xdx=∫3112t(t5+t51)dt
Simplifying the terms, we will get
⇒∫6π4π2tanx(tan5x+tan5x1)sec2xdx=∫3112t(t5t10+1)dt
⇒∫6π4π2tanx(tan5x+tan5x1)sec2xdx=∫3112(t4t10+1)dt
⇒∫6π4π2tanx(tan5x+tan5x1)sec2xdx=∫3112(t10+1)t4dt
Now, we will again use the method of substitution.
Substituting p=t5, we get the limits for pas p=15=1 and p=(31)5=3251=32−5 .
Differentiating t with respect to x by using the differentiation formula, we get
dp=5t4dt ⇒t4dt=5dp
So, the equation becomes
⇒∫3112(t10+1)t4dt=∫32−512(p2+1)⋅5dp
⇒∫3112(t10+1)t4dt=101∫32−51(p2+1)dp
Now, by integrating using the integration formula ∫p2+11dp=tan−1p, we get
⇒∫3112(t10+1)t4dt=101(tan−1p)32−51
Now, by substituting the limits, we get
⇒∫3112(t10+1)t4dt=101tan−1(1)−tan−132−5
⇒∫3112(t10+1)t4dt=101[tan−1(1)−(tan−13231)]
⇒∫3112(t10+1)t4dt=101[4π−(tan−1931)]
Therefore, The integral ∫4π6πsin2x(tan5x+cot5x)dx equals 101[4π−(tan−1931)].
Thus Option (A) is correct.
Note:
We should always be conscious that whenever we are using the method of substitution in integration, we should always change the upper limit and lower limit accordingly to the substitution. So we should know that limits change according to the variable substituted. Here it is important to remember the different formulas of integration and differentiation.