Question
Question: The integral \[\int{\dfrac{dx}{\left( 1+\sqrt{x} \right)\sqrt{x-{{x}^{2}}}}}\] is equal to (where c ...
The integral ∫(1+x)x−x2dx is equal to (where c is a constant of integration):
& \left( \text{a} \right)\text{ }-2\sqrt{\dfrac{1+\sqrt{x}}{1-\sqrt{x}}}+c \\\ & \left( \text{b} \right)\text{ }-2\sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}+c \\\ & \left( \text{c} \right)\text{ }2\left[ \dfrac{\sqrt{x}-1}{\sqrt{1-x}} \right]+c \\\ & \left( \text{d} \right)\text{ }-\sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}+c \\\ \end{aligned}$$Solution
Put x=sinθ, squaring on both sides we will get x=sin2θ, substitute these values in the integral. Use basic integral formulae to solve the integral. After getting the simplified integral, replace sinθ by x.
Complete step-by-step solution:
Given the integral is,
∫(1+x)x−x21.dx−(1)
Let us consider,
x=sinθ.
Now squaring on both sides we get,
x=sin2θ
Differentiating it, we get,
dx=2sinθcosθ.dθ
Putting the value of x,x and dx in equation (1), we get
I=∫(1+sinθ)sin2θ−sin4θ2sinθcosθdθ
Take (sin2θ) common from the square root, we get
I=∫(1+sinθ)sinθ1−sin2θ2sinθcosθ.dθ
We know, cos2θ+sin2θ=1⇒cos2θ=1−sin2θ, so we get
I=∫(1+sinθ)sinθcosθ2sinθcosθ.dθ
Cancel out (sinθ.cosθ) from numerator & denominator.
=∫1+sinθ2.dθ=2∫1+sinθdθ
Multiply (1−sinθ) on numerator and denominator.
=2∫(1+sinθ)(1−sinθ)(1−sinθ)dθ
We know (a−b)(a+b)=a2−b2