Solveeit Logo

Question

Question: The integral \[\int{\dfrac{dx}{\left( 1+\sqrt{x} \right)\sqrt{x-{{x}^{2}}}}}\] is equal to (where c ...

The integral dx(1+x)xx2\int{\dfrac{dx}{\left( 1+\sqrt{x} \right)\sqrt{x-{{x}^{2}}}}} is equal to (where c is a constant of integration):

& \left( \text{a} \right)\text{ }-2\sqrt{\dfrac{1+\sqrt{x}}{1-\sqrt{x}}}+c \\\ & \left( \text{b} \right)\text{ }-2\sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}+c \\\ & \left( \text{c} \right)\text{ }2\left[ \dfrac{\sqrt{x}-1}{\sqrt{1-x}} \right]+c \\\ & \left( \text{d} \right)\text{ }-\sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}+c \\\ \end{aligned}$$
Explanation

Solution

Put x=sinθ\sqrt{x}=\sin \theta , squaring on both sides we will get x=sin2θx={{\sin }^{2}}\theta , substitute these values in the integral. Use basic integral formulae to solve the integral. After getting the simplified integral, replace sinθ\sin \theta by x\sqrt{x}.

Complete step-by-step solution:
Given the integral is,
1(1+x)xx2.dx(1)\int{\dfrac{1}{\left( 1+\sqrt{x} \right)\sqrt{x-{{x}^{2}}}}}.dx-(1)
Let us consider,
x=sinθ\sqrt{x}=\sin \theta .
Now squaring on both sides we get,
x=sin2θx={{\sin }^{2}}\theta
Differentiating it, we get,
dx=2sinθcosθ.dθdx=2\sin \theta \cos \theta .d\theta
Putting the value of x,x\sqrt{x},x and dxdx in equation (1), we get
I=2sinθcosθdθ(1+sinθ)sin2θsin4θI=\int{\dfrac{2\sin \theta \cos \theta d\theta }{\left( 1+\sin \theta \right)\sqrt{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }}}
Take (sin2θ)\left( {{\sin }^{2}}\theta \right) common from the square root, we get
I=2sinθcosθ.dθ(1+sinθ)sinθ1sin2θI=\int{\dfrac{2\sin \theta \cos \theta .d\theta }{\left( 1+\sin \theta \right)\sin \theta \sqrt{1-{{\sin }^{2}}\theta }}}
We know, cos2θ+sin2θ=1cos2θ=1sin2θ{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\Rightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta , so we get
I=2sinθcosθ.dθ(1+sinθ)sinθcosθI=\int{\dfrac{2\sin \theta \cos \theta .d\theta }{\left( 1+\sin \theta \right)\sin \theta \cos \theta }}
Cancel out (sinθ.cosθ)\left( \sin \theta .\cos \theta \right) from numerator & denominator.
=2.dθ1+sinθ=2dθ1+sinθ=\int{\dfrac{2.d\theta }{1+\sin \theta }=2\int{\dfrac{d\theta }{1+\sin \theta }}}
Multiply (1sinθ)\left( 1-\sin \theta \right) on numerator and denominator.
=2(1sinθ)dθ(1+sinθ)(1sinθ)=2\int{\dfrac{\left( 1-\sin \theta \right)d\theta }{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)}}
We know (ab)(a+b)=a2b2\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}

& \Rightarrow I=2\int{\dfrac{\left( 1-\sin \theta \right)d}{1-{{\sin }^{2}}\theta }}=2\int{\dfrac{1-\sin \theta }{{{\cos }^{2}}\theta }d\theta } \\\ & \Rightarrow 2\int{\left( \dfrac{1}{{{\cos }^{2}}\theta }-\dfrac{\sin \theta }{{{\cos }^{2}}\theta } \right)d\theta } \\\ \end{aligned}$$ We know, $$\dfrac{1}{\cos \theta }=\sec \theta \Rightarrow \dfrac{1}{{{\cos }^{2}}\theta }={{\sec }^{2}}\theta ,\dfrac{\sin \theta }{\cos \theta }=\tan \theta $$, so above equation can be written as, $$\begin{aligned} & =2\int{\left( {{\sec }^{2}}\theta -\tan \theta \sec \theta \right)d\theta } \\\ & =2\int{{{\sec }^{2}}\theta .d\theta }-2\int{\tan \theta \sec \theta .d\theta } \\\ \end{aligned}$$ We know, $$\int{{{\sec }^{2}}\theta .d\theta }=\tan \theta +c,\int{\tan \theta \sec \theta }.d\theta =\sec \theta +c$$, so above equation can be written as $$\therefore I=2\left[ \tan \theta -\sec \theta \right]+c-(2)$$ We took $$\sin \theta =\sqrt{x}$$and $$x={{\sin }^{2}}\theta $$ So we get, $$\begin{aligned} & \cos \theta =\sqrt{1-{{\sin }^{2}}\theta }=\sqrt{1-x} \\\ & \tan \theta =\dfrac{\sin \theta }{\cos \theta }=\dfrac{\sqrt{x}}{\sqrt{1-x}} \\\ & \sec \theta =\dfrac{1}{\cos \theta }=\dfrac{1}{\sqrt{1-x}} \\\ \end{aligned}$$ So the equation (2) can be written as, $$\begin{aligned} & I=2\left[ \dfrac{\sqrt{x}}{\sqrt{1-x}}-\dfrac{1}{\sqrt{1-x}} \right]+c \\\ & I=2\left[ \dfrac{\sqrt{x}-1}{\sqrt{1-x}} \right]+c \\\ \end{aligned}$$ **Hence, the correct option is (d).** **Note:** By putting $$\sqrt{x}=\cos \theta $$, we cannot find the required solution. Therefore, put $$\sqrt{x}=\sin \theta $$ to solve the integral. You should remember the basic integration formulas, which are required for the solution. You can solve most of the steps using basic identities and functions. However, to get the final answer you need integration formulas.