Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The integral cos(log  x)dx\int \cos( \log \; x)dx is equal to : (where C is a constant of integration)

A

x2[sin(logex)cos(logex)+C]\frac{x}{2} \left[\sin\left(\log_{e} x\right)-\cos\left(\log_{e}x\right)+C\right]

B

x2[cos(logex)+sin(logex)]+C\frac{x}{2}\left[\cos\left(\log_{e}x\right) + \sin\left(\log_{e} x\right)\right]+C

C

x[cos(logex)+sin(logex)]+Cx [\cos (\log_e x) + \sin (\log_e x )] + C

D

x[cos(logex)sin(logex)]+Cx [\cos (\log_e x) - \sin (\log_e x )] + C

Answer

x2[cos(logex)+sin(logex)]+C\frac{x}{2}\left[\cos\left(\log_{e}x\right) + \sin\left(\log_{e} x\right)\right]+C

Explanation

Solution

I=cos(nx)dxI = \int\cos \left(\ell n x \right)dx I=cos(lnx).x+sin(nx)dxI = \cos\left(ln x\right) .x + \int \sin\left(\ell nx\right)dx cos(nx)x+[sin(nx).xcos(nx)dx]\cos\left(\ell n x\right)x+\left[\sin\left(\ell nx\right). x -\int\cos\left(\ell n x\right) dx\right] I=x2[sin(nx)+cos(nx)]+CI = \frac{x}{2} \left[\sin\left(\ell nx\right)+\cos\left(\ell nx\right)\right]+C