Solveeit Logo

Question

Question: The integral \(\int _ { - 1 / 2 } ^ { 1 / 2 } \left( [ x ] + \ln \left( \frac { 1 + x } { 1 - x } \...

The integral 1/21/2([x]+ln(1+x1x))dx\int _ { - 1 / 2 } ^ { 1 / 2 } \left( [ x ] + \ln \left( \frac { 1 + x } { 1 - x } \right) \right) d x equal to

A

12\frac { - 1 } { 2 }

B

0

C

1

D

2ln(12)2 \ln \left( \frac { 1 } { 2 } \right)

Answer

12\frac { - 1 } { 2 }

Explanation

Solution

log(1+x1x)\log \left( \frac { 1 + x } { 1 - x } \right) is an odd function of x as f(x)=f(x)f ( - x ) = - f ( x )

I=1/21/2[x]dx+0I = \int _ { - 1 / 2 } ^ { 1 / 2 } [ x ] d x + 0I=1/20[x]dx+01/2[x]dxI = \int _ { - 1 / 2 } ^ { 0 } [ x ] d x + \int _ { 0 } ^ { 1 / 2 } [ x ] d x

I=1/201dx+0I = \int _ { - 1 / 2 } ^ { 0 } - 1 d x + 0[x]1/20=12- [ x ] _ { - 1 / 2 } ^ { 0 } = \frac { - 1 } { 2 }.